Suppr超能文献

预测接受腹膜透析的终末期肾病患者腹膜透析相关腹膜炎风险的列线图:模型开发与验证研究

A nomogram for predicting the risk of peritoneal dialysis-associated peritonitis in patients with end-stage renal disease undergoing peritoneal dialysis: model development and validation study.

作者信息

Wang Yuehong, Wu Zhimin, Huang Liuqi, Suo Dan, Zhang Min, Dai Meifen, You Tianhui, Zheng Jing

机构信息

School of Nursing, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.

Department of Nursing, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan City, Guangdong Province, China.

出版信息

BMC Nephrol. 2025 May 19;26(1):248. doi: 10.1186/s12882-025-04165-5.

Abstract

OBJECTIVE

This study aimed to develop and validate a nomogram to predict the risk of peritoneal dialysis-associated peritonitis (PDAP) in patients undergoing peritopreneal dialysis.

METHODS

A retrospective analysis was conducted on clinical data from 376 patients at Nanhai District People's Hospital in Foshan City, Guangdong Province, between December 2017 and December 2024. The dataset was randomly divided into a training set (n = 244) and a validation set (n = 132). Risk factors for PDAP were identified using Least Absolute Shrinkage and Selection Operator (LASSO) regression and logistic regression, and a predictive nomogram was developed and validated using R4.1.3. The model's performance was evaluated through receiver operating characteristic (ROC) curves, the Hosmer-Lemeshow goodness-of-fit test, decision curve analysis (DCA), and clinical impact curves (CICs).

RESULTS

Eight potential predictors were selected by LASSO regression analysis. Multivariate logistic regression analysis confirmed that age, dialysis duration, albumin, hemoglobin, β-microglobulin, Potassium and lymphocyte count were independent risk factors for PDAP occurrence (P = 0.001). The nomogram's area under the curve (AUC) was 0.929 (95% CI: 0.896-0.962) in the training set and 0.905 (95% CI: 0.855-0.955) in the validation set. The Hosmer-Lemeshow goodness-of-fit test indicated a good model fit (training set χ = 13.181, P = 0.106; validation set χ = 8.264, P = 0.408). Both DCA and CIC revealed that the nomogram model had good clinical utility in predicting PDAP.

CONCLUSION

The proposed nomogram exhibited excellent predictive performance and clinical utility, providing a valuable tool for early identification and intervention in PDAP. Further external validation and prospective studies are recommended.

摘要

目的

本研究旨在开发并验证一种列线图,以预测接受腹膜透析的患者发生腹膜透析相关性腹膜炎(PDAP)的风险。

方法

对广东省佛山市南海区人民医院2017年12月至2024年12月期间376例患者的临床资料进行回顾性分析。数据集被随机分为训练集(n = 244)和验证集(n = 132)。使用最小绝对收缩和选择算子(LASSO)回归和逻辑回归确定PDAP的危险因素,并使用R4.1.3开发和验证预测列线图。通过受试者工作特征(ROC)曲线、Hosmer-Lemeshow拟合优度检验、决策曲线分析(DCA)和临床影响曲线(CIC)评估模型性能。

结果

通过LASSO回归分析选择了8个潜在预测因素。多因素逻辑回归分析证实,年龄、透析时间、白蛋白、血红蛋白、β-微球蛋白、钾和淋巴细胞计数是PDAP发生的独立危险因素(P = 0.001)。列线图在训练集中的曲线下面积(AUC)为0.929(95%CI:0.896 - 0.962),在验证集中为0.905(95%CI:0.855 - 0.955)。Hosmer-Lemeshow拟合优度检验表明模型拟合良好(训练集χ = 13.181,P = 0.106;验证集χ = 8.264,P = 0.408)。DCA和CIC均显示列线图模型在预测PDAP方面具有良好的临床实用性。

结论

所提出的列线图表现出优异的预测性能和临床实用性,为PDAP的早期识别和干预提供了有价值的工具。建议进一步进行外部验证和前瞻性研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35d/12090575/76cb424638fe/12882_2025_4165_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验