Suppr超能文献

RobusTAD:基于参考面板的嵌套拓扑相关结构域注释

RobusTAD: reference panel based annotation of nested topologically associating domains.

作者信息

Zhang Yanlin, Dali Rola, Blanchette Mathieu

机构信息

School of Computer Science, Mcgill University, Montréal, Canada.

出版信息

Genome Biol. 2025 May 19;26(1):129. doi: 10.1186/s13059-025-03568-9.

Abstract

Topologically associating domains (TADs) are fundamental units of 3D genomes and play essential roles in gene regulation. Hi-C data suggests a hierarchical organization of TADs. Accurately annotating nested TADs from Hi-C data remains challenging, both in terms of the precise identification of boundaries and the correct inference of hierarchies. While domain boundary is relatively well conserved across cells, few approaches have taken advantage of this fact. Here, we present RobusTAD to annotate TAD hierarchies. It incorporates additional Hi-C data to refine boundaries annotated from the study sample. RobusTAD outperforms existing tools at boundary and domain annotation across several benchmarking tasks.

摘要

拓扑相关结构域(TADs)是三维基因组的基本单位,在基因调控中发挥着重要作用。Hi-C数据表明TADs存在层次结构。从Hi-C数据中准确注释嵌套的TADs仍然具有挑战性,这在边界的精确识别和层次结构的正确推断方面都是如此。虽然结构域边界在不同细胞间相对保守,但很少有方法利用这一事实。在此,我们提出了RobusTAD来注释TAD层次结构。它纳入了额外的Hi-C数据,以细化从研究样本中注释的边界。在多个基准测试任务中,RobusTAD在边界和结构域注释方面优于现有工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fad/12087246/458dd065f031/13059_2025_3568_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验