Alshaharni Mohammed O, Safhi Fatmah A, Al Aboud Nora M, Kucher Dmitry E, Fayad Eman, Alqurashi Mohammed, Al-Qthanin Rahmah N, Almami Ibtesam S M, Ghamry Heba I, El-Moneim Diaa Abd, Kamara Mohamed M, Ali Abdelraouf M
Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia.
Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
PeerJ. 2025 May 16;13:e19341. doi: 10.7717/peerj.19341. eCollection 2025.
Drought is a critical abiotic stress significantly reducing global wheat production, especially under climate fluctuations. Investigating wheat genetic variability using physiological and agronomic characteristics is essential for advancing breeding to enhance drought resilience and ensure sustainable production in light of global population growth. The genetic diversity and associations among traits of fourteen diverse genotypes of bread wheat in drought-stressed and well-watered conditions were studied, focusing on physiological and agronomic responses. Significant variations were detected among irrigation regimes, genotypes, and their interactions for all assessed characteristics. Drought stress substantially declined chlorophyll (Chl ) and (Chl ), net photosynthetic rate (NPR), transpiration rate (Tr), stomatal conductance (gs), membrane stability index (MSI), relative water content (RWC), plant height (PH), yield-related attributes, and grain yield. Conversely, it significantly increased malondialdehyde content, proline content (ProC), and activities of antioxidant enzymes, including catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD). The genotypes, G3 (L-1117), G8 (L-120), and G12 (L-1142) exhibited superior drought tolerance, maintaining high photosynthetic efficiency, RWC, antioxidant enzyme activity, and grain yield. Under drought conditions, these genotypes achieved grain yields of 6.32 t/ha (G8), 5.97 t/ha (G12), and 5.84 t/ha (G3), significantly surpassing the other genotypes. Genotypic classification and drought tolerance indices confirmed the superiority of G3, G8, and G12 as drought-resilient candidates, while G2, G5, G7, and G14 exhibited lower adaptability. Genotypic stability analysis (additive main effects and multiplicative interaction (AMMI) and ranking biplot) indicated that G3, G8, G6, and G12 were highly stable across diverse environments, making them promising candidates for wheat breeding programs. Agronomic traits such as PH, number of grains per spike (NGPS), and thousand kernel weight (TKW) were positively associated with drought tolerance. Furthermore, the multivariate analyses, including principal component analysis (PCA), correlation, and path analysis, highlighted the significance of RWC, MSI, chlorophyll content, and antioxidant enzymes in sustaining yield under drought stress. Broad-sense heritability estimates were high for key drought-related traits, particularly APX, SOD, and NGPS, indicating strong genetic potential for selection. These findings indicated the importance of integrating physiological and biochemical markers into breeding programs to develop high-yielding drought-tolerant wheat varieties, contributing to sustainable wheat production under water-limited conditions.
干旱是一种关键的非生物胁迫,显著降低了全球小麦产量,尤其是在气候波动的情况下。鉴于全球人口增长,利用生理和农艺特征研究小麦遗传变异性对于推进育种以增强抗旱能力和确保可持续生产至关重要。研究了14种不同基因型面包小麦在干旱胁迫和水分充足条件下的遗传多样性以及性状之间的关联,重点关注生理和农艺反应。对于所有评估的特征,在灌溉方式、基因型及其相互作用之间检测到了显著差异。干旱胁迫显著降低了叶绿素(Chl )和(Chl )、净光合速率(NPR)、蒸腾速率(Tr)、气孔导度(gs)、膜稳定性指数(MSI)、相对含水量(RWC)、株高(PH)、产量相关属性和籽粒产量。相反,它显著增加了丙二醛含量、脯氨酸含量(ProC)以及包括过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)和超氧化物歧化酶(SOD)在内的抗氧化酶活性。基因型G3(L - 1117)、G8(L - 120)和G12(L - 1142)表现出优异的耐旱性,保持了较高的光合效率、RWC、抗氧化酶活性和籽粒产量。在干旱条件下,这些基因型的籽粒产量分别达到6.32吨/公顷(G8)、5.97吨/公顷(G12)和5.84吨/公顷(G3),显著超过其他基因型。基因型分类和耐旱性指数证实了G3、G8和G12作为耐旱候选品种的优越性,而G2、G5、G7和G14表现出较低的适应性。基因型稳定性分析(加性主效应和乘法交互作用(AMMI)以及排序双标图)表明,G3、G8、G6和G12在不同环境中高度稳定,使其成为小麦育种计划中有前景的候选品种。诸如PH、每穗粒数(NGPS)和千粒重(TKW)等农艺性状与耐旱性呈正相关。此外,包括主成分分析(PCA)、相关性分析和通径分析在内的多变量分析强调了RWC、MSI、叶绿素含量和抗氧化酶在干旱胁迫下维持产量的重要性。关键干旱相关性状的广义遗传力估计值较高,特别是APX、SOD和NGPS,表明具有很强的选择遗传潜力。这些发现表明将生理和生化标记整合到育种计划中以培育高产耐旱小麦品种的重要性,这有助于在水资源有限的条件下实现小麦的可持续生产。