Rbaa M, Barrahi A, Seghiri R, Katin Konstantin P, Berdimurodov Elyor, Abuelizz Hatem A, Jama C, Bentiss F, Lakhrissi B, Zarrouk A
The Higher Institute of Nursing Professions and Health Techniques of Casablanca P.O. Box 20250 Casablanca Morocco
Laboratory of Organic Chemistry, Catalysis and Environment, Faculty of Sciences, Ibn Tofail University PO Box 133 14000 Kenitra Morocco.
RSC Adv. 2025 May 19;15(21):16570-16587. doi: 10.1039/d5ra00835b. eCollection 2025 May 15.
The purpose of this study is to investigate the acid corrosion inhibition efficiency on carbon steel (CS) by utilizing two novel quinoxaline derivatives obtained from the reaction of recently synthesized d-mannose (MR and MR) nucleophilic substitution (SN). The synthesized compounds were recently characterized by C-NMR and H-NMR spectroscopy. Electrochemistry testing was employed to evaluate their protective efficiency, whereas the surface was investigated using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The results indicate that the two inhibitors MR and MR exhibit inhibition efficiencies of 95.3% and 94.8% at 10 M for MR and MR, respectively. The impedance results indicated that the incorporation of MR and MR into the corrosive medium reduces charge capacitance, hence systematically enhancing the interface charge/discharge function and creating an adsorbed layer on the metal surface. Moreover, SEM, water contact angle, and XPS techniques corroborated the formation of a protective coating on the carbon steel substrate surface following the incorporation of MR and MR. The chemical interaction mechanisms at the atomic scale were analysed using theoretical calculations, DFT calculations and MD simulations.
本研究的目的是利用两种新型喹喔啉衍生物来研究其对碳钢(CS)的酸腐蚀抑制效率,这两种衍生物是由最近合成的d-甘露糖(MR和MR)通过亲核取代(SN)反应得到的。合成的化合物最近通过碳核磁共振(C-NMR)和氢核磁共振(H-NMR)光谱进行了表征。采用电化学测试来评估它们的保护效率,而使用X射线光电子能谱(XPS)和扫描电子显微镜(SEM)对表面进行了研究。结果表明,两种抑制剂MR和MR在10 M时对MR和MR的抑制效率分别为95.3%和94.8%。阻抗结果表明,将MR和MR加入腐蚀介质中会降低电荷电容,从而系统地增强界面电荷/放电功能,并在金属表面形成吸附层。此外,SEM、水接触角和XPS技术证实了在加入MR和MR后,碳钢基体表面形成了保护涂层。使用理论计算、密度泛函理论(DFT)计算和分子动力学(MD)模拟分析了原子尺度上的化学相互作用机制。