Suppr超能文献

植物中的定量环境质谱成像:挑战与未来应用展望

Quantitative ambient mass spectrometry imaging in plants: A perspective on challenges and future applications.

作者信息

Noll Sarah E, Sama Andrea M, Tripka Abigail, Dickinson Alexandra J

机构信息

Department of Chemistry, Pomona College, Claremont, CA, 91711, USA; The Conservation Center, The Institute of Fine Arts, New York University, New York, NY, 10075, USA.

Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA.

出版信息

Curr Opin Plant Biol. 2025 Jun;85:102736. doi: 10.1016/j.pbi.2025.102736. Epub 2025 May 19.

Abstract

Mass spectrometry imaging (MSI) is a powerful approach to understanding plant chemistry in a native context because it retains key spatial information that is otherwise averaged out, permitting chemical compounds to be mapped to specific tissue structures. Identifying the spatial localization of compounds in plant tissues has provided insights into the synthesis and functional role of a wide range of endogenous molecules. The power and utility of MSI is being further expanded through the development of quantitative methodologies, which enable relative and absolute quantification of target analytes. Here, we briefly summarize applications of MSI in plant studies. We then turn our discussion to the challenges and developments in quantitative MSI, with a particular focus on ambient liquid extraction-based methods. Quantitative MSI is an emerging discipline in plant studies and holds great promise for revealing new information about the molecular composition of plant tissues and the pathways that regulate plant physiology.

摘要

质谱成像(MSI)是一种在自然环境中理解植物化学的强大方法,因为它保留了否则会被平均掉的关键空间信息,使化合物能够被映射到特定的组织结构上。确定植物组织中化合物的空间定位为深入了解多种内源性分子的合成和功能作用提供了线索。通过定量方法的发展,MSI的能力和实用性正在进一步扩展,这些方法能够对目标分析物进行相对和绝对定量。在这里,我们简要总结MSI在植物研究中的应用。然后我们将讨论转向定量MSI的挑战和发展,特别关注基于环境液体萃取的方法。定量MSI是植物研究中的一个新兴学科,在揭示植物组织分子组成和调节植物生理的途径的新信息方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b47/12140171/ab70a6b6b562/nihms-2083895-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验