Suppr超能文献

用于为年轻人提供基于应用程序干预措施的戒烟信息测试——一项在线实验。

Smoking cessation message testing to inform app-based interventions for young adults - an online experiment.

作者信息

Hamoud Josef, Devkota Janardan, Regan Timothy, Luken Amanda, Waring Joseph, Han Jasmin Jiuying, Naughton Felix, Vilardaga Roger, Bricker Jonathan, Latkin Carl, Moran Meghan, Thrul Johannes

机构信息

Faculty of Medicine, Department of Medical Statistics, University of Gottingen, Gottingen, Germany.

Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA.

出版信息

BMC Public Health. 2025 May 20;25(1):1852. doi: 10.1186/s12889-025-22995-8.

Abstract

BACKGROUND

To improve the efficacy of digital smoking cessation interventions for young adults, intervention messages need to be acceptable and appropriate for this population. The current study compared ratings of smoking cessation and urge reduction messages based on Cognitive Behavioral Therapy (distraction themed) and Acceptance and Commitment Therapy (acceptance themed) in young adults who smoke.

METHODS

A total of 124 intervention messages were rated by an online Qualtrics panel of N = 301 diverse young adults who currently smoked tobacco cigarettes (Age M = 26.6 years; 54.8% male; 51.5% racial/ethnic minority; 16.9% sexual or gender minority (SGM); 62.5% daily smoking). Each participant rated 10 randomly selected messages (3,010 total message ratings; 24.3 ratings per message) on 5-point scales (higher scores representing more favorable ratings) evaluating quality of content, quality of design, perceived support for coping with smoking urges, and perceived support for quitting smoking. Mixed models examined associations between message category (distraction vs. acceptance), participant level predictors (sociodemographic variables, readiness and motivation to quit, daily smoking, psychological flexibility), and message ratings.

RESULTS

Overall ratings ranged from M = 3.61 (SD = 1.25) on support for coping with urges to M = 3.90 (SD = 1.03) on content, with no differences between distraction and acceptance messages. Male participants gave more favorable ratings on the dimensions of support for coping (p < 0.01) and support for quitting (p < 0.01). Participants identifying as SGM gave lower ratings for message design (p < 0.05). Participants with a graduate degree gave higher ratings on support for coping with urges and support for quitting (both p < 0.05). Higher motivation to quit was associated with more favorable scores across all dimensions (all p < 0.01). Those smoking daily rated messages as less helpful for coping with urges (p < 0.01) and quitting smoking (p < 0.05) compared to those smoking non-daily. Few interactions were found between message category distraction vs. acceptance and participant characteristics.

CONCLUSIONS

Distraction and acceptance messages received similar ratings among young adults who smoke cigarettes. Message revisions may be needed to increase appeal to women, SGM, those with lower education, and those less motivated to quit. Messages will be refined and used in an ongoing micro-randomized trial to investigate their real-time impact on smoking urges and behaviors.

摘要

背景

为提高针对年轻人的数字戒烟干预措施的效果,干预信息需要为该人群所接受且合适。本研究比较了基于认知行为疗法(分心主题)和接纳与承诺疗法(接纳主题)的戒烟及减少吸烟冲动信息在吸烟年轻人中的评分。

方法

共有124条干预信息由一个在线Qualtrics小组进行评分,该小组由N = 301名不同的目前吸烟的年轻人组成(年龄中位数M = 26.6岁;54.8%为男性;51.5%为少数族裔;16.9%为性取向或性别少数群体(SGM);62.5%为每日吸烟者)。每位参与者在5分制量表(分数越高表示评价越积极)上对10条随机选择的信息(共3010条信息评分;每条信息24.3个评分)进行评分,评估内容质量、设计质量、应对吸烟冲动的感知支持以及戒烟的感知支持。混合模型检验了信息类别(分心与接纳)、参与者层面预测因素(社会人口统计学变量、戒烟的准备程度和动机、每日吸烟情况、心理灵活性)与信息评分之间的关联。

结果

总体评分范围从应对冲动的支持方面的M = 3.61(标准差SD = 1.25)到内容方面的M = 3.90(标准差SD = 1.03),分心信息和接纳信息之间没有差异。男性参与者在应对支持(p < 0.01)和戒烟支持(p < 0.01)维度上给出了更积极的评分。自我认同为SGM的参与者对信息设计的评分较低(p < 0.05)。拥有研究生学位的参与者在应对冲动的支持和戒烟支持方面给出了更高的评分(均p < 0.05)。更高的戒烟动机与所有维度上更积极的评分相关(均p < 0.01)。与非每日吸烟者相比,每日吸烟者对信息在应对冲动(p < 0.01)和戒烟(p < 0.05)方面的帮助评价较低。在信息类别分心与接纳和参与者特征之间几乎没有发现交互作用。

结论

分心信息和接纳信息在吸烟年轻人中获得了相似的评分。可能需要对信息进行修订,以提高对女性、SGM、受教育程度较低者以及戒烟动机较低者的吸引力。信息将被完善并用于正在进行的微随机试验中,以研究它们对吸烟冲动和行为的实时影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75d9/12090558/ca0dc245cbdb/12889_2025_22995_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验