Suppr超能文献

延时超分辨率成像及对伸长轴突和迁移神经元中生长锥的光学操控

Time-Lapse Super-Resolution Imaging and Optical Manipulation of Growth Cones in Elongating Axons and Migrating Neurons.

作者信息

Sawada Masato, Nakajima Chikako, Umeda Erika, Takagi Yuma, Nakashima Norihiko, Vepřek Nynke A, Küllmer Florian, Nasufović Veselin, Arndt Hans-Dieter, Trauner Dirk, Igarashi Michihiro, Sawamoto Kazunobu

机构信息

Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan.

Division of Neural Development and Regeneration, National Institute of Physiological Sciences, Aichi, Japan.

出版信息

Bio Protoc. 2025 Mar 20;15(6):e5251. doi: 10.21769/BioProtoc.5251.

Abstract

The growth cone is a highly motile tip structure that guides axonal elongation and directionality in differentiating neurons. Migrating immature neurons also exhibit a growth cone-like structure (GCLS) at the tip of the leading process. However, it remains unknown whether the GCLS in migrating immature neurons shares the morphological and molecular features of axonal growth cones and can thus be considered equivalent to them. Here, we describe a detailed method for time-lapse imaging and optical manipulation of growth cones using a super-resolution laser-scanning microscope. To observe growth cones in elongating axons and migrating neurons, embryonic cortical neurons and neonatal ventricular-subventricular zone (V-SVZ)-derived neurons, respectively, were transfected with plasmids encoding fluorescent protein-conjugated cytoskeletal probes and three-dimensionally cultured in Matrigel, which mimics the in vivo background. At 2-5 days in vitro, the morphology and dynamics of these growth cones and their associated cytoskeletal molecules were assessed by time-lapse super-resolution imaging. The use of photoswitchable cytoskeletal inhibitors, which can be reversibly and precisely controlled by laser illumination at two different wavelengths, revealed the spatiotemporal regulatory machinery and functional significance of growth cones in neuronal migration. Furthermore, machine learning-based methods enabled us to automatically segment growth cone morphology from elongating axons and the leading process. This protocol provides a cutting-edge methodology for studying the growth cone in developmental and regenerative neuroscience, being adaptable for various cell biology and imaging applications. Key features • Three-dimensional primary culture of migrating and differentiating neurons in Matrigel. • Visualization of fine morphology and dynamics of growth cones using super-resolution imaging. • Optical manipulation of cytoskeletal molecules in growth cones using photoswitchable inhibitors. • Machine learning-based extraction of growth cone morphology.

摘要

生长锥是一种高度能动的尖端结构,在分化神经元中引导轴突伸长和方向性。迁移的未成熟神经元在其领先突起的尖端也表现出类似生长锥的结构(GCLS)。然而,迁移的未成熟神经元中的GCLS是否具有轴突生长锥的形态和分子特征,从而可被视为与其等同,仍然未知。在这里,我们描述了一种使用超分辨率激光扫描显微镜对生长锥进行延时成像和光学操纵的详细方法。为了观察伸长轴突和迁移神经元中的生长锥,分别用编码荧光蛋白偶联细胞骨架探针的质粒转染胚胎皮质神经元和新生脑室下区(V-SVZ)来源的神经元,并在模拟体内背景的基质胶中进行三维培养。在体外2-5天时,通过延时超分辨率成像评估这些生长锥及其相关细胞骨架分子的形态和动力学。使用可光开关的细胞骨架抑制剂,其可通过两种不同波长的激光照射进行可逆且精确的控制,揭示了生长锥在神经元迁移中的时空调节机制和功能意义。此外,基于机器学习的方法使我们能够从伸长的轴突和领先突起中自动分割出生长锥形态。该方案为发育和再生神经科学中研究生长锥提供了一种前沿方法,适用于各种细胞生物学和成像应用。关键特征 • 在基质胶中对迁移和分化神经元进行三维原代培养。 • 使用超分辨率成像可视化生长锥的精细形态和动力学。 • 使用可光开关抑制剂对生长锥中的细胞骨架分子进行光学操纵。 • 基于机器学习提取生长锥形态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5302/12086313/4d07929fbafd/BioProtoc-15-6-5251-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验