阿尔茨海默病的神经生理进展:基于纵向脑磁图动态因果模型的见解

Neurophysiological Progression in Alzheimer's Disease: Insights From Dynamic Causal Modelling of Longitudinal Magnetoencephalography.

作者信息

Jafarian Amirhossein, Assem Melek Karadag, Kocagoncu Ece, Lanskey Juliette H, Fye Haddy, Williams Rebecca, Quinn Andrew J, Pitt Jemma, Raymont Vanessa, Lowe Stephen, Singh Krish D, Woolrich Mark, Nobre Anna C, Henson Richard N, Friston Karl J, Rowe James B

机构信息

MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK.

Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.

出版信息

Hum Brain Mapp. 2025 Jun 1;46(8):e70234. doi: 10.1002/hbm.70234.

Abstract

Neurodegenerative diseases, including Alzheimer's disease, are characterised by selective neuronal vulnerability with regional, laminar, cellular and neurotransmitter specificity. The regional losses of neurons and their synapses are associated with neurophysiological changes and cognitive decline. Hypotheses related to these mechanisms can be tested and compared by dynamic causal modelling (DCM) of human neuroimaging data, including magnetoencephalography (MEG). In this paper, we use DCM of cross-spectral densities to model changes between baseline and follow-up data in cortical regions of the default mode network, to characterise longitudinal changes in cortical microcircuits and their connectivity underlying resting-state MEG. Twenty-nine people with amyloid-positive mild cognitive impairment and Alzheimer's disease early dementia were studied at baseline and after an average interval of 16 months. To study longitudinal changes induced by Alzheimer's disease, we evaluate three complementary sets of DCM: (i) with regional specificity, of the contributions of neurons to measurements to accommodate regional variability in disease burden; (ii) with dual parameterisation of excitatory neurotransmission, motivated by preclinical and clinical evidence of distinct effects of disease on AMPA versus NMDA type glutamate receptors; and (iii) with constraints to test specific clinical hypothesis about the effects of disease-progression. Bayesian model selection at the group level confirmed evidence for regional specificity of the effects of Alzheimer's disease, with evidence for selective changes in NMDA neurotransmission, and progressive changes in connectivity within and between Precuneus and medial prefrontal cortex. Moreover, alterations in effective connectivity vary in accordance with individual differences in cognitive decline during follow-up. These applications of DCM enrich the mechanistic understanding of the pathophysiology of human Alzheimer's disease and inform experimental medicine studies of novel therapies. More generally, longitudinal DCM provides a potential platform for natural history and interventional studies of neurodegenerative and neuropsychiatric diseases, with selective neuronal vulnerability.

摘要

包括阿尔茨海默病在内的神经退行性疾病,其特征在于具有区域、层状、细胞和神经递质特异性的选择性神经元易损性。神经元及其突触的区域性丧失与神经生理变化和认知衰退相关。与这些机制相关的假说可以通过对包括脑磁图(MEG)在内的人类神经影像数据进行动态因果模型(DCM)测试和比较。在本文中,我们使用交叉谱密度的DCM对默认模式网络皮质区域基线数据和随访数据之间的变化进行建模,以表征静息态MEG基础上皮质微回路及其连接性的纵向变化。对29名淀粉样蛋白阳性的轻度认知障碍和阿尔茨海默病早期痴呆患者在基线时和平均间隔16个月后进行了研究。为了研究阿尔茨海默病引起的纵向变化,我们评估了三组互补的DCM:(i)具有区域特异性,即神经元对测量值的贡献,以适应疾病负担的区域差异;(ii)具有兴奋性神经传递的双参数化,这是由疾病对AMPA型与NMDA型谷氨酸受体的不同影响的临床前和临床证据所推动的;(iii)具有约束条件,以测试关于疾病进展影响的特定临床假说。在组水平上的贝叶斯模型选择证实了阿尔茨海默病影响具有区域特异性的证据,有NMDA神经传递选择性变化以及楔前叶和内侧前额叶皮质内部及之间连接性渐进性变化的证据。此外,有效连接性的改变根据随访期间认知衰退的个体差异而变化。DCM的这些应用丰富了对人类阿尔茨海默病病理生理学的机制理解,并为新型疗法的实验医学研究提供了信息。更一般地说,纵向DCM为具有选择性神经元易损性的神经退行性和神经精神疾病的自然史和干预性研究提供了一个潜在平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95f4/12093352/f8d3cb9ead91/HBM-46-e70234-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索