Jiang Mumen, Yuan Jiangnan
School of Optoelectronic and Communication Engineering, Xiamen University of Technology, Xiamen, 361000, China.
Sci Rep. 2025 May 21;15(1):17586. doi: 10.1038/s41598-025-02876-1.
To address the high deployment complexity and algorithmic intricacies associated with current indoor target localization and tracking methods, this paper presents a Wi-Fi CSI indoor localization and tracking algorithm that integrates a Gaussian Mixture Model (GMM) with Weighted K-Nearest Neighbors (WKNN) and Kalman filtering. Initially, offline fingerprint information is collected from the indoor environment to establish an offline fingerprint database using the GMM. During the online phase, the trajectory information of the target individuals is gathered, and the clustering capabilities of the GMM are employed to optimize the grouping of Channel State Information (CSI) data. By categorizing the CSI data into distinct groups and assigning appropriate k-values for each group, we then perform initial trajectory estimation using the WKNN algorithm. Finally, the trajectory estimation is refined through a Kalman filter tracking model, achieving effective passive tracking of individuals indoors. In indoor environments, GMM effectively captures complex channel characteristics compared to other localization and tracking algorithms, demonstrating significant filtering and noise reduction capabilities. Experimental results demonstrate that the proposed localization algorithm significantly improves tracking accuracy compared to traditional localization methods and the CNN-based approach.
为了解决当前室内目标定位和跟踪方法所涉及的高部署复杂性和算法复杂性问题,本文提出了一种将高斯混合模型(GMM)与加权K近邻(WKNN)及卡尔曼滤波相结合的Wi-Fi CSI室内定位和跟踪算法。首先,从室内环境收集离线指纹信息,使用高斯混合模型建立离线指纹数据库。在在线阶段,收集目标个体的轨迹信息,并利用高斯混合模型的聚类能力优化信道状态信息(CSI)数据的分组。通过将CSI数据分类到不同的组并为每个组分配适当的k值,然后使用加权K近邻算法进行初始轨迹估计。最后,通过卡尔曼滤波器跟踪模型对轨迹估计进行优化,实现室内个体的有效被动跟踪。在室内环境中,与其他定位和跟踪算法相比,高斯混合模型能有效捕捉复杂的信道特性,展现出显著的滤波和降噪能力。实验结果表明,与传统定位方法和基于卷积神经网络的方法相比,所提出的定位算法显著提高了跟踪精度。