Zhang Ying, Li Ruoxuan, Zheng Daocan, Zhao Jinhong, Qing Ke, He Rongrong, Ma Zhaoxing, Chen Jie, Xue Nianguo, Tian Xing, Wang Enqi, Xu Jiameng, Li Yubin, Tan Bao-Cai, Zhou Zhipeng, Wang Chengyuan, Dong Jiaqiang
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; State Key Laboratory of Microbial Technology; School of Life Sciences, Shandong University, Qingdao 266237, China.
Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 201203, China.
Plant Cell. 2025 Jun 4;37(6). doi: 10.1093/plcell/koaf126.
Serine functions as both a substrate for protein biosynthesis and a signaling molecule for growth and development. However, the mechanism remains poorly understood. Here, we cloned and functionally characterized the maize (Zea mays) gene Dek20, which encodes phosphoglycerate dehydrogenase1 (PGDH1), the rate-limiting enzyme in the phosphorylated pathway of serine biosynthesis (PPSB). The dek20(Ser282Leu) mutation disrupts the interaction between residues Ser282 and His284, leading to the release of His284, which subsequently binds NAD+/NADH to inhibit serine biosynthesis. Consequently, serine content decreases dramatically, and the cellular response to nutrient starvation is enriched in transcriptome analysis. Serine deficiency triggers tRNASer degradation and reduced translation elongation at serine codons. The stalled ribosomes activate General Control Nonderepressible 2 (GCN2) kinase, which affects the phosphorylation of eukaryotic initiation factor 2α (eIF2α) and ribosomal protein S6 kinase (S6 K), furtherly inhibiting translation initiation. Consistent with these findings, polysome profiling and Ribo-seq analysis revealed a marked decrease in translation efficiency in dek20. Notably, proteins essential for storage compound biosynthesis and cell cycle progression exhibit reduced translation in dek20. Collectively, our findings reveal the primary serine biosynthesis pathway and a mechanism for monitoring amino acid levels in maize, the model plant with C4 photosynthesis.
丝氨酸既是蛋白质生物合成的底物,也是生长发育的信号分子。然而,其机制仍知之甚少。在这里,我们克隆并对玉米(Zea mays)基因Dek20进行了功能表征,该基因编码磷酸甘油酸脱氢酶1(PGDH1),这是丝氨酸生物合成磷酸化途径(PPSB)中的限速酶。dek20(Ser282Leu)突变破坏了Ser282和His284残基之间的相互作用,导致His284的释放,随后His284结合NAD+/NADH以抑制丝氨酸生物合成。因此,丝氨酸含量急剧下降,并且在转录组分析中细胞对营养饥饿的反应增强。丝氨酸缺乏触发tRNASer降解,并降低丝氨酸密码子处的翻译延伸。停滞的核糖体激活一般控制非抑制性2(GCN2)激酶,这会影响真核起始因子2α(eIF2α)和核糖体蛋白S6激酶(S6 K)的磷酸化,进一步抑制翻译起始。与这些发现一致,多核糖体分析和核糖体测序分析显示dek20中的翻译效率显著降低。值得注意的是,储存化合物生物合成和细胞周期进程所必需的蛋白质在dek20中的翻译减少。总体而言,我们的发现揭示了主要的丝氨酸生物合成途径以及在具有C4光合作用的模式植物玉米中监测氨基酸水平的机制。