Li Zhipeng, Li Zecheng
School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu, China.
Sci Rep. 2025 May 23;15(1):17922. doi: 10.1038/s41598-025-03007-6.
Ultra-wideband (UWB) positioning in coal mines faces severe accuracy degradation due to non-line-of-sight (NLOS) errors. To address this, we propose the Chan Based on Reference Coordinate (CBORF) algorithm, which integrates dynamic error compensation and adaptive parameter tuning to achieve centimeter-level accuracy with minimal computational overhead. Unlike existing methods (e.g., Chan-Taylor, Kalman-Chan), CBORF introduces a reference label-guided correction mechanism, statistically analyzing deviations between estimated and actual reference coordinates to compensate for systemic offset and dispersion errors. Simulations under exponential-distributed NLOS noise demonstrate CBORF's superiority: RMSE of 0.026 m (stationary) and 0.075 m (moving targets), outperforming Chan (0.48 m) and Taylor (0.38 m) by 1-2 orders of magnitude. It also maintains the efficiency of the Chan algorithm and avoids iterative filtering (e.g., particle resampling in PF-Chan), which is a significant advantage over other algorithms. This work advances the state-of-the-art by resolving the long-standing trade-off between accuracy and computational complexity in NLOS-prone environments. Unlike filtering-dependent approaches (e.g., PF-Chan, Kalman-Chan), CBORF eliminates the need for iterative particle resampling or linear-Gaussian assumptions, ensuring reliability in high-noise, nonlinear conditions. Its parameter-driven design further enhances adaptability across diverse underground layouts, offering a practical and scalable solution for real-time personnel tracking in coal mines.
由于非视距(NLOS)误差,煤矿中的超宽带(UWB)定位面临着严重的精度下降问题。为了解决这一问题,我们提出了基于参考坐标的Chan算法(CBORF),该算法集成了动态误差补偿和自适应参数调整,以最小的计算开销实现厘米级精度。与现有方法(如Chan-Taylor、Kalman-Chan)不同,CBORF引入了参考标签引导的校正机制,对估计参考坐标和实际参考坐标之间的偏差进行统计分析,以补偿系统偏移和色散误差。在指数分布的NLOS噪声下进行的仿真表明了CBORF的优越性:静态时均方根误差(RMSE)为0.026米,移动目标时为0.075米,比Chan算法(0.48米)和Taylor算法(0.38米)高出1-2个数量级。它还保持了Chan算法的效率,避免了迭代滤波(如PF-Chan中的粒子重采样),这是相对于其他算法的一个显著优势。这项工作通过解决在容易出现NLOS的环境中精度和计算复杂性之间长期存在的权衡问题,推动了技术发展。与依赖滤波的方法(如PF-Chan、Kalman-Chan)不同,CBORF无需迭代粒子重采样或线性高斯假设,确保了在高噪声、非线性条件下的可靠性。其参数驱动的设计进一步增强了在各种地下布局中的适应性,为煤矿中的实时人员跟踪提供了一种实用且可扩展的解决方案。