Suppr超能文献

基于参考坐标的Chan算法在煤矿井下超宽带人员定位中的应用

Reference coordinate based Chan algorithm for UWB personnel localization in underground coal mines.

作者信息

Li Zhipeng, Li Zecheng

机构信息

School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu, China.

出版信息

Sci Rep. 2025 May 23;15(1):17922. doi: 10.1038/s41598-025-03007-6.

Abstract

Ultra-wideband (UWB) positioning in coal mines faces severe accuracy degradation due to non-line-of-sight (NLOS) errors. To address this, we propose the Chan Based on Reference Coordinate (CBORF) algorithm, which integrates dynamic error compensation and adaptive parameter tuning to achieve centimeter-level accuracy with minimal computational overhead. Unlike existing methods (e.g., Chan-Taylor, Kalman-Chan), CBORF introduces a reference label-guided correction mechanism, statistically analyzing deviations between estimated and actual reference coordinates to compensate for systemic offset and dispersion errors. Simulations under exponential-distributed NLOS noise demonstrate CBORF's superiority: RMSE of 0.026 m (stationary) and 0.075 m (moving targets), outperforming Chan (0.48 m) and Taylor (0.38 m) by 1-2 orders of magnitude. It also maintains the efficiency of the Chan algorithm and avoids iterative filtering (e.g., particle resampling in PF-Chan), which is a significant advantage over other algorithms. This work advances the state-of-the-art by resolving the long-standing trade-off between accuracy and computational complexity in NLOS-prone environments. Unlike filtering-dependent approaches (e.g., PF-Chan, Kalman-Chan), CBORF eliminates the need for iterative particle resampling or linear-Gaussian assumptions, ensuring reliability in high-noise, nonlinear conditions. Its parameter-driven design further enhances adaptability across diverse underground layouts, offering a practical and scalable solution for real-time personnel tracking in coal mines.

摘要

由于非视距(NLOS)误差,煤矿中的超宽带(UWB)定位面临着严重的精度下降问题。为了解决这一问题,我们提出了基于参考坐标的Chan算法(CBORF),该算法集成了动态误差补偿和自适应参数调整,以最小的计算开销实现厘米级精度。与现有方法(如Chan-Taylor、Kalman-Chan)不同,CBORF引入了参考标签引导的校正机制,对估计参考坐标和实际参考坐标之间的偏差进行统计分析,以补偿系统偏移和色散误差。在指数分布的NLOS噪声下进行的仿真表明了CBORF的优越性:静态时均方根误差(RMSE)为0.026米,移动目标时为0.075米,比Chan算法(0.48米)和Taylor算法(0.38米)高出1-2个数量级。它还保持了Chan算法的效率,避免了迭代滤波(如PF-Chan中的粒子重采样),这是相对于其他算法的一个显著优势。这项工作通过解决在容易出现NLOS的环境中精度和计算复杂性之间长期存在的权衡问题,推动了技术发展。与依赖滤波的方法(如PF-Chan、Kalman-Chan)不同,CBORF无需迭代粒子重采样或线性高斯假设,确保了在高噪声、非线性条件下的可靠性。其参数驱动的设计进一步增强了在各种地下布局中的适应性,为煤矿中的实时人员跟踪提供了一种实用且可扩展的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5ba/12102212/dc7a9d7c8cf2/41598_2025_3007_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验