Ji Yinchu, Xu Fei, Shuai Jianwei, Yang Dongping, Yao Chenggui
Zhejiang Normal University, School of Mathematical Sciences, JinHua 312000, China.
Jiaxing University, College of Data Science, Jiaxing 314000, China.
Phys Rev E. 2025 Apr;111(4-1):044215. doi: 10.1103/PhysRevE.111.044215.
The 90-minute ultradian rhythm is a hallmark of healthy human sleep, yet its governing mechanisms remain elusive. In this study, we develop a biologically grounded sleep model to unravel the complex dynamics underlying this rhythm. Our model integrates both circadian and ultradian drives, which collectively shape sleep architecture, along with bidirectional "flip-flop" switches that control transitions between wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Calibrated with empirically derived neurophysiological parameters, the model successfully reproduces core sleep features, including the 24-hour circadian rhythm and the 90-minute ultradian rhythm. To dissect state transition mechanisms, we employ potential landscape analysis to quantify how global stability is modulated by three key factors: circadian drive, homeostatic drive, and REM pressure. Our results reveal that the ultradian rhythm emerges from an interplay between a weak ultradian drive and REM pressure. In a reduced model focusing on NREM-REM interactions, we demonstrate that the periodic transitions between NREM and REM sleep arise from a saddle-node bifurcation on an invariant circle (SNIC) induced by REM sleep pressure. Additionally, the ultradian drive entrains the rhythmic NREM-REM system to exhibit the stable 90-minute ultradian rhythm, as characterized by the Arnold tongue. Our work provides the mechanistic explanation of the 90-minute ultradian rhythm, identifying REM pressure as its core regulator and highlighting the SNIC bifurcation together with the Arnold tongue as its dynamical mechanisms. This framework establishes testable neurophysiological requirements for experimental validation, thereby bridging theoretical models with empirical sleep neuroscience.
90分钟的超日节律是健康人类睡眠的一个标志,但其调控机制仍然难以捉摸。在本研究中,我们开发了一个基于生物学的睡眠模型,以揭示这种节律背后的复杂动态。我们的模型整合了昼夜节律和超日节律驱动,它们共同塑造了睡眠结构,同时还整合了控制清醒、非快速眼动(NREM)睡眠和快速眼动(REM)睡眠之间转换的双向“触发器”开关。通过根据经验得出的神经生理参数进行校准,该模型成功再现了核心睡眠特征,包括24小时的昼夜节律和90分钟的超日节律。为了剖析状态转换机制,我们采用势景观分析来量化全局稳定性是如何由三个关键因素调节的:昼夜节律驱动、稳态驱动和REM压力。我们的结果表明,超日节律源于微弱的超日节律驱动和REM压力之间的相互作用。在一个专注于NREM-REM相互作用的简化模型中,我们证明了NREM和REM睡眠之间的周期性转换源于REM睡眠压力在不变圆上诱导的鞍结分岔(SNIC)。此外,超日节律驱动使有节律的NREM-REM系统表现出稳定的90分钟超日节律,如阿诺德舌所表征的那样。我们的工作提供了对90分钟超日节律的机制解释,将REM压力确定为其核心调节器,并突出了SNIC分岔以及阿诺德舌作为其动力学机制。这个框架建立了可测试的神经生理要求以进行实验验证,从而将理论模型与实证睡眠神经科学联系起来。