Suppr超能文献

高压下CO到碳产物的级联电催化转化

Cascade Electrocatalytic Conversion of CO to C Products at Elevated Pressures.

作者信息

Girichandran Nandalal, Mohan Lakshmi, Buisman Sanne, Morrison Andrew, Kortlever Ruud

机构信息

Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, Netherlands.

Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.

出版信息

ChemSusChem. 2025 Jul 27;18(15):e202500695. doi: 10.1002/cssc.202500695. Epub 2025 Jun 10.

Abstract

Recent progress in the electrochemical reduction of CO (CORR) has led to notable breakthroughs in generating C compounds such as ethylene and ethanol. Nevertheless, the direct formation of C products encounters significant limitations due to the C-C coupling reaction, posing a considerable challenge to improving their faradaic efficiency. Here, a design for an elevated pressure cascade catalytic reactor to convert CO to C products in a two-step electrochemical process is presented. At 25 bar pressure, by regulating the potential of the cascade system and the electrolyte flow rate, a 40% selectivity for 2-propanol on a copper electrode placed upstream of a silver electrode that converts CO to CO is reported. In cascade mode (with both silver and copper electrodes active), the C:C oxygenate ratio significantly increases to 7 compared to the noncascade mode (copper only) with a modest ratio of about 0.6. Therefore, our elevated pressure cascade electrolysis approach demonstrates a notable step forward in CO electroreduction to oxygenated C products.

摘要

电化学还原CO(CORR)的最新进展在生成乙烯和乙醇等含碳化合物方面取得了显著突破。然而,由于C-C偶联反应,含碳产物的直接形成面临重大限制,这对提高其法拉第效率构成了相当大的挑战。在此,提出了一种用于在两步电化学过程中将CO转化为含碳产物的高压级联催化反应器的设计。在25巴压力下,通过调节级联系统的电位和电解液流速,据报道,在将CO转化为CO₂的银电极上游的铜电极上,对2-丙醇的选择性为40%。在级联模式(银电极和铜电极均处于活性状态)下,与非级联模式(仅铜电极)相比,C:含氧化合物的比率显著增加至7,非级联模式下该比率适中,约为0.6。因此,我们的高压级联电解方法在将CO电还原为含氧化合物方面向前迈出了显著的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd79/12302312/05cf596d1c76/CSSC-18-e202500695-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验