Suppr超能文献

用于3D打印整体式生物反应器的自给自感生物催化墨水。

Self-Sufficient and Autosensing Biocatalytic Inks for 3D-Printed Monolithic Bioreactors.

作者信息

Andrés-Sanz Daniel, García-Astrain Clara, Aizarna-Lopetegui Uxue, Lenzi Elisa, de Aberasturi Dorleta Jimenez, López-Gallego Fernando

机构信息

Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain.

Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Gipuzkoa Spain.

出版信息

ACS Appl Mater Interfaces. 2025 Jun 4;17(22):32350-32361. doi: 10.1021/acsami.5c03485. Epub 2025 May 25.

Abstract

Additive manufacturing, commonly known as three-dimensional (3D) printing, transforms simple in silico designs into real objects with accessibility, reproducibility, and precision. By merging the versatility of 3D printing with the inherent advantages of enzymatic processes, this technology opens up new possibilities for optimizing enzyme immobilization in continuous flow reactors. Here, we systematically investigate various formulations to develop an optimal biocatalytic ink capable of encapsulating enzymes and cofactors within a hydrogel matrix. The ink, composed of agarose and polyethylenimine (PEI), printed as porous monoliths, improved enzyme retention and cofactor absorption through ionic interactions, outperforming alternative formulations. By further integrating gold nanorods into the system, reaction substrates and intermediates (i.e., NAD, isopropanol) can be detected through in operando surface enhanced Raman scattering (SERS) sensing, serving as a complementary tool for fluorescence microscopy. Using this optimized ink, we fabricated 3D-printed reactors with diverse architectures to evaluate their efficiency in the continuous flow reduction of ethyl acetoacetate. Reactors with a cross-shaped design exhibit stable product yields and minimize enzyme and cofactor leaching during continuous operation. Hence, we formulate and print a self-sufficient biocatalytic ink capable of sustaining the activity of immobilized dehydrogenases in continuous flow reactions without the addition of exogenous cofactors.

摘要

增材制造,通常称为三维(3D)打印,可将简单的计算机模拟设计转化为具有可及性、可重复性和精确性的实物。通过将3D打印的多功能性与酶促过程的固有优势相结合,这项技术为优化连续流反应器中的酶固定化开辟了新的可能性。在此,我们系统地研究了各种配方,以开发一种能够在水凝胶基质中封装酶和辅因子的最佳生物催化墨水。由琼脂糖和聚乙烯亚胺(PEI)组成的这种墨水,打印成多孔整体材料,通过离子相互作用提高了酶的保留率和辅因子的吸收,性能优于其他配方。通过进一步将金纳米棒集成到系统中,可以通过原位表面增强拉曼散射(SERS)传感检测反应底物和中间体(即NAD、异丙醇),作为荧光显微镜的补充工具。使用这种优化的墨水,我们制造了具有不同结构的3D打印反应器,以评估它们在连续流还原乙酰乙酸乙酯中的效率。具有十字形设计的反应器在连续运行期间表现出稳定的产物产率,并使酶和辅因子的浸出最小化。因此,我们配制并打印了一种自给自足的生物催化墨水,能够在连续流反应中维持固定化脱氢酶的活性,而无需添加外源辅因子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验