Suppr超能文献

Amphetamine's effects on terminal excitability of noradrenergic locus coeruleus neurons are impulse-dependent at low but not high doses.

作者信息

Ryan L J, Tepper J M, Young S J, Groves P M

出版信息

Brain Res. 1985 Aug 19;341(1):155-63. doi: 10.1016/0006-8993(85)91483-0.

Abstract

The actions of amphetamine in the locus coeruleus and its terminal fields in the frontal cortex were studied using extracellular recording to measure terminal excitability, firing rate and the probability of antidromic action potential invasion of the somatodendritic region in urethane anesthetized rats. At low dose (0.25 mg/kg), amphetamine increased terminal excitability. In comparison, subsequent administration of the highest dose (5.0 mg/kg, i.v.) of amphetamine tested suppressed neuronal firing and blocked antidromic action potential invasion of the somatodendritic region. Despite the absence of impulse traffic, high dose amphetamine reversed the effect of low dose amphetamine in the terminal field and decreased terminal excitability. The alpha 2 antagonist, yohimbine (0.5 mg/kg, i.v.), reversed the effects of high dose amphetamine on terminal excitability and somatodendritic invasion without reinstating neuronal firing. Noradrenergic autoreceptor agonists are known to decrease terminal excitability, whereas antagonists are known to increase terminal excitability. Thus, since low dose amphetamine produces the same effect on terminal excitability that antagonists do, it appears that low dose amphetamine may reduce autoreceptor activation by reducing norepinephrine release in frontal cortex as a consequence of inhibiting locus coeruleus neuronal firing. In contrast, high dose amphetamine acts like autoreceptor agonists do and decreased terminal excitability. Hence high dose amphetamine may increase norepinephrine release, even in the absence of impulse traffic.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验