Guo Siyuan, Zhao Kun, Liang Luwen, Li Zifan, Han Bin, Ou Xinwen, Yao Shan, Lin Zhiqing, Dong Zhimin, Liu Yunhai, Ye Liqun, Weng Bo, Cai Yanpeng, Yang Zhifeng
Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P.R. China.
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, P.R. China.
Angew Chem Int Ed Engl. 2025 Jul 28;64(31):e202509141. doi: 10.1002/anie.202509141. Epub 2025 Jun 3.
Photocatalytic oxygen (O) activation via energy transfer offers a sustainable approach for singlet oxygen (O) synthesis, while its performance suffers from the ultrafast exciton dissociation and sluggish intersystem crossing (ISC) process. Up to date, exciton regulation is still in its infancy. Here, via linkage engineering of covalent organic frameworks (COFs), we propose a fully conjugated sp carbon-linked COFs (spc-Py-Bpy COFs) with strong exciton interaction and fast ISC for boosted O photosynthesis. The spc-Py-Bpy COFs delivers a record-high O yield (624 µM min) with 100% selectivity, which is ca. eight times that of the traditional imine-bridged COFs (Im-Py-Bpy COFs, ca. 95.8% selectivity), outperforming documented systems. Transient absorption spectroscopy and theoretical investigations demonstrate that the fully conjugated sp carbon linkage of spc-Py-Bpy COFs can enhance Coulomb interaction, promote ISC and push forward the transfer of triplet exciton to the O adsorption sites throughout the COFs matrix, jointly facilitating the energy transfer process for efficient O photosynthesis and bypassing the traditional electron transfer process. Hence, spc-Py-Bpy COFs can selectively degrade acetaminophen within minutes under visible light irradiation and enables stable degradation of emerging pollutants in a continuous flow membrane reactor (20 × 30 × 2 cm) utilizing natural sunlight and dissolved O.
通过能量转移进行光催化氧(O)活化提供了一种可持续的单线态氧(O)合成方法,但其性能受到超快激子解离和缓慢的系间窜越(ISC)过程的影响。到目前为止,激子调控仍处于起步阶段。在此,通过共价有机框架(COF)的连接工程,我们提出了一种具有强激子相互作用和快速ISC的全共轭sp碳连接的COF(spc-Py-Bpy COF),用于增强O光合作用。spc-Py-Bpy COF实现了创纪录的高O产率(624 µM min),选择性为100%,约为传统亚胺桥连COF(Im-Py-Bpy COF,选择性约为95.8%)的八倍,优于已报道的体系。瞬态吸收光谱和理论研究表明,spc-Py-Bpy COF的全共轭sp碳连接可以增强库仑相互作用,促进ISC,并推动三重态激子在整个COF基质中向O吸附位点的转移,共同促进高效O光合作用的能量转移过程,绕过传统的电子转移过程。因此,spc-Py-Bpy COF在可见光照射下几分钟内就能选择性地降解对乙酰氨基酚,并能在利用自然阳光和溶解O的连续流膜反应器(20×30×2 cm)中稳定降解新出现的污染物。