Zhang Yubing, Zheng Fufu
Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.
Ann Surg Oncol. 2025 Sep;32(9):6774-6775. doi: 10.1245/s10434-025-17491-7. Epub 2025 May 26.
This study developed a machine learning (ML) model combining clinical and radiomic features to predict surgical difficulty in pheochromocytomas and paragangliomas (PPGLs), aiming to optimize preoperative planning and reduce perioperative complications. Retrospective clinical and imaging data from PPGLs patients were analyzed to construct two sets of models: clinical parameter models and clinical-radiomic models. Seven ML algorithms were tested, with the SVM-based clinical-radiomic model achieving the highest performance (training area under the curve [AUC]: 0.96, validation AUC: 0.85), significantly surpassing the clinical parameter model. SHAP analysis highlighted radiomic signature (Rad-score) as the strongest predictor, followed by body mass index, age, tumor size, and preoperative heart rate. The model enables objective stratification of surgical difficulty, aiding tailored preoperative strategies. Future directions include integrating multi-omics data, refining surgical difficulty criteria through multicenter studies, developing real-time intraoperative predictive tools, and automating radiomic workflows via deep learning. This research advances personalized surgical management for PPGLs, demonstrating significant clinical translation potential.
本研究开发了一种结合临床和影像组学特征的机器学习(ML)模型,用于预测嗜铬细胞瘤和副神经节瘤(PPGLs)的手术难度,旨在优化术前规划并减少围手术期并发症。对PPGLs患者的回顾性临床和影像数据进行分析,构建了两组模型:临床参数模型和临床-影像组学模型。测试了七种ML算法,基于支持向量机的临床-影像组学模型表现最佳(训练曲线下面积[AUC]:0.96,验证AUC:0.85),显著优于临床参数模型。SHAP分析突出显示影像组学特征(Rad评分)是最强的预测因子,其次是体重指数、年龄、肿瘤大小和术前心率。该模型能够对手术难度进行客观分层,有助于制定个性化的术前策略。未来的方向包括整合多组学数据、通过多中心研究完善手术难度标准、开发实时术中预测工具以及通过深度学习实现影像组学工作流程自动化。本研究推动了PPGLs的个性化手术管理,具有显著的临床转化潜力。