文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于鼻脑给药的载法匹拉韦阿帕索姆和非离子表面活性剂囊泡的制备及其体外和体内表征

Preparation, and ex vivo and in vivo Characterization of Favipiravir-Loaded Aspasomes and Niosomes for Nose-to-Brain Administration.

作者信息

Salamah Maryana, Volk Balázs, Lekli István, Bak István, Gyöngyösi Alexandra, Kozma Gábor, Kónya Zoltán, Szalenkó-Tőkés Ágnes, Kiricsi Ágnes, Rovó László, Balogh-Weiser Diána, Zupkó István, Csóka Ildikó, Katona Gábor, Balogh György Tibor

机构信息

Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary.

Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary.

出版信息

Int J Nanomedicine. 2025 May 22;20:6489-6514. doi: 10.2147/IJN.S518486. eCollection 2025.


DOI:10.2147/IJN.S518486
PMID:40420912
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12105672/
Abstract

PURPOSE: The present study aimed to develop and compare the intranasal applicability of favipiravir-loaded aspasomes (FAV-ASPs) using film hydration method, and favipiravir-loaded niosomes (FAV-NIOs) using ethanol injection method. METHODS: The FAV-ASP and FAV-NIO formulations were characterized according to nanoparticulate characteristics (DLS, drug loading, drug encapsulation efficacy, droplet size distribution), drug release and permeability behavior. RESULTS: The optimized FAV-ASP formulation (FAV-ASP8) consisted of FAV, ascorbyl palmitate, Span® 60 and cholesterol (30:25:25:50 w/w) with nano-scale size range (292.06 ± 2.10 nm), narrow polydispersity index (PDI) value (0.36 ± 0.03), adequate zeta potential (-74.73 ± 3.28 mV) and acceptable encapsulation efficiency (55.33 ± 0.41%). The optimized FAV-NIO formulation (FAV-NIO9) contained FAV, Span® 60 and cholesterol (30:30:40 ) with nano-scale size range (167.13 ± 1.60 nm), narrow PDI value (0.07 ± 0.01), adequate zeta potential (-27.1 ± 1.24 mV) and acceptable encapsulation efficiency (51.30 ± 0.69%). FAV-ASP8 and FAV-NIO9 were suitable for spraying into the nasal cavity (droplet size distribution <200 µm). In vitro drug release and permeability studies demonstrated enhanced solubility and increased blood-brain barrier (BBB) permeability of FAV formulations, respectively. The ex vivo human nasal permeability study revealed that FAV diffusion from FAV-ASP8 was higher than from FAV-NIO9 or initial FAV. Furthermore, the in vivo animal study showed that FAV-ASP8 had a higher BBB penetration compared to FAV-NIO9 and pure FAV. The in vitro-in vivo correlation study showed good correlation between the in vitro and the in vivo pharmacokinetic data. CONCLUSION: FAV-ASP8 for nose-to-brain delivery system could be a promising formulation to improve FAV bioavailability compared to FAV-NIO9.

摘要

目的:本研究旨在开发并比较采用薄膜水化法制备的载有法匹拉韦的阿糖胞苷脂质体(FAV-ASPs)和采用乙醇注入法制备的载有法匹拉韦的非离子型脂质体(FAV-NIOs)的鼻腔适用性。 方法:根据纳米颗粒特性(动态光散射、载药量、药物包封率、液滴尺寸分布)、药物释放和渗透行为对FAV-ASP和FAV-NIO制剂进行表征。 结果:优化后的FAV-ASP制剂(FAV-ASP8)由法匹拉韦、棕榈酸抗坏血酸、司盘®60和胆固醇(30:25:25:50 w/w)组成,粒径范围为纳米级(292.06±2.10 nm),多分散指数(PDI)值窄(0.36±0.03),zeta电位合适(-74.73±3.28 mV),包封效率可接受(55.33±0.41%)。优化后的FAV-NIO制剂(FAV-NIO9)包含法匹拉韦、司盘®60和胆固醇(30:30:40),粒径范围为纳米级(167.13±1.60 nm),PDI值窄(0.07±0.01),zeta电位合适(-27.1±1.24 mV),包封效率可接受(51.30±0.69%)。FAV-ASP8和FAV-NIO9适合喷入鼻腔(液滴尺寸分布<200 µm)。体外药物释放和渗透研究分别证明了FAV制剂的溶解度增强和血脑屏障(BBB)通透性增加。体外人鼻腔渗透研究表明,FAV从FAV-ASP8中的扩散高于从FAV-NIO9或初始FAV中的扩散。此外,体内动物研究表明,与FAV-NIO9和纯FAV相比,FAV-ASP8具有更高的BBB渗透率。体外-体内相关性研究表明体外和体内药代动力学数据之间具有良好的相关性。 结论:与FAV-NIO9相比,用于鼻-脑递送系统的FAV-ASP8可能是一种有前景的制剂,可提高法匹拉韦的生物利用度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/46e2b55c966c/IJN-20-6489-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/149c0709a087/IJN-20-6489-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/7316d2d0671d/IJN-20-6489-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/259013c5e6c9/IJN-20-6489-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/e1a51367b942/IJN-20-6489-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/a437113b7891/IJN-20-6489-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/3dee936321e1/IJN-20-6489-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/241ed7ea4242/IJN-20-6489-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/3543c7eac29b/IJN-20-6489-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/390d0976d6a4/IJN-20-6489-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/eddf55924cef/IJN-20-6489-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/46e2b55c966c/IJN-20-6489-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/149c0709a087/IJN-20-6489-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/7316d2d0671d/IJN-20-6489-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/259013c5e6c9/IJN-20-6489-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/e1a51367b942/IJN-20-6489-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/a437113b7891/IJN-20-6489-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/3dee936321e1/IJN-20-6489-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/241ed7ea4242/IJN-20-6489-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/3543c7eac29b/IJN-20-6489-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/390d0976d6a4/IJN-20-6489-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/eddf55924cef/IJN-20-6489-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a6/12105672/46e2b55c966c/IJN-20-6489-g0011.jpg

相似文献

[1]
Preparation, and ex vivo and in vivo Characterization of Favipiravir-Loaded Aspasomes and Niosomes for Nose-to-Brain Administration.

Int J Nanomedicine. 2025-5-22

[2]
Formulation and Evaluation of Niosomal in situ Nasal Gel of a Serotonin Receptor Agonist, Buspirone Hydrochloride for the Brain Delivery via Intranasal Route.

Pharm Nanotechnol. 2018

[3]
Favipiravir-Based Ionic Liquids as Potent Antiviral Drugs for Oral Delivery: Synthesis, Solubility, and Pharmacokinetic Evaluation.

Mol Pharm. 2021-8-2

[4]
A promise of nose to brain delivery of bevacizumab intranasal sol-gel formulation substantiated in rat C6 glioma model.

Naunyn Schmiedebergs Arch Pharmacol. 2025-4

[5]
Ascorbic acid derivative-loaded modified aspasomes: formulation, and clinical evaluation for melasma treatment.

J Liposome Res. 2019-3-27

[6]
Ceftriaxone-loaded albumin-based nanoparticles incorporated into in situ ionic sensitive nasal gels: Development, characterization, and nasal drug deposition studies.

Eur J Pharm Biopharm. 2025-7

[7]
Preparation, characterization, and optimization of asenapine maleate mucoadhesive nanoemulsion using Box-Behnken design: In vitro and in vivo studies for brain targeting.

Int J Pharm. 2020-8-30

[8]
Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery.

Drug Deliv. 2014-12-29

[9]
Development, and characterization of lamotrigine-loaded bovine serum albumin nanoparticles using QbD approach.

Drug Deliv. 2025-12

[10]
Intranasal Delivery of Paclitaxel-Loaded Ligand Conjugated Polymeric Nanoparticles for Targeted Brain Delivery.

AAPS PharmSciTech. 2025-2-3

本文引用的文献

[1]
Development and Characterization of In Situ Gelling Nasal Cilostazol Spanlastics.

Gels. 2025-1-22

[2]
Investigation of powder properties and application aspects impacting nasal deposition of spray-dried powders in a nasal cast.

Eur J Pharm Biopharm. 2025-4

[3]
Advancements in Antiviral Therapy: Favipiravir Sodium in Nasal Formulation.

AAPS PharmSciTech. 2024-11-26

[4]
Clinically Relevant Characterization and Comparison of Ryaltris and Other Anti-Allergic Nasal Sprays.

Pharmaceutics. 2024-7-26

[5]
CNS Viral Infections-What to Consider for Improving Drug Treatment: A Plea for Using Mathematical Modeling Approaches.

CNS Drugs. 2024-5

[6]
Ascorbyl palmitate ameliorates inflammatory diseases by inhibition of NLRP3 inflammasome.

Int Immunopharmacol. 2024-4-20

[7]
Nose to brain delivery of mirtazapine via lipid nanocapsules: Preparation, statistical optimization, radiolabeling, in vivo biodistribution and pharmacokinetic study.

Drug Deliv Transl Res. 2024-9

[8]
Development of favipiravir dry powders for intranasal delivery: An integrated cocrystal and particle engineering approach via spray freeze drying.

Int J Pharm. 2024-3-25

[9]
Research progress in brain-targeted nasal drug delivery.

Front Aging Neurosci. 2024-1-17

[10]
Editorial: Cellular and molecular mechanisms of neurotropic viral infection.

Front Cell Neurosci. 2024-1-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索