Qin Li, Xing Zhanyi, Wang Jianghao, Lu Guangtong, Ji Houzhao
School of Electrical Engineering, Yanshan University, Qinhuangdao 066012, China.
Biomimetics (Basel). 2025 May 16;10(5):324. doi: 10.3390/biomimetics10050324.
Ground walking training using a floating-base lower-limb exoskeleton rehabilitation robot improves patients' dynamic balance function, thereby increasing their motor and daily life activity capabilities. We propose a balance-directed motion generator (BDMG) based on the principles of deep reinforcement learning. The reward function sub-components pertaining to physiological guidance and compliant assistance were designed to explore motion instructions that are harmoniously aligned with the human body's balance correction mechanisms. To address the sparse rewards resulting from the above design, we introduce a stepwise training method that adjusts the reward function to control the model's training direction and exploration difficulty. Based on the aforementioned generator, we construct a training and evaluation process database and design an abnormal command recognizer by extracting samples with diverse feature characteristics. Furthermore, we develop a sample generation optimizer to search for the optimal action combination within a closed space defined by abnormal commands and extremum points of physiological trajectories, thereby enabling the design of an abnormal instruction corrector. To validate the proposed approach, we implement a training simulation environment in MuJoCo and conduct experiments on the developed lower-limb exoskeleton system.
使用浮动基座下肢外骨骼康复机器人进行地面行走训练可改善患者的动态平衡功能,从而提高其运动和日常生活活动能力。我们基于深度强化学习原理提出了一种平衡导向运动生成器(BDMG)。设计了与生理引导和柔顺辅助相关的奖励函数子组件,以探索与人体平衡校正机制和谐一致的运动指令。为了解决上述设计导致的稀疏奖励问题,我们引入了一种逐步训练方法,该方法调整奖励函数以控制模型的训练方向和探索难度。基于上述生成器,我们构建了一个训练和评估过程数据库,并通过提取具有不同特征的样本设计了一个异常命令识别器。此外,我们开发了一个样本生成优化器,以在由异常命令和生理轨迹极值点定义的封闭空间内搜索最优动作组合,从而设计出一个异常指令校正器。为了验证所提出的方法,我们在MuJoCo中实现了一个训练模拟环境,并在开发的下肢外骨骼系统上进行了实验。