文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

对脂质利用的仔细研究破坏了临床分离株中两性霉素B的反应性。 (注:原文中“of”后面内容缺失)

Scrutinized lipid utilization disrupts Amphotericin-B responsiveness in clinical isolates of .

作者信息

Pradhan Supratim, Dhar Dhruba, Manna Debolina, Chakraborty Shubhangi, Bhattacharyya Arkapriya, Chauhan Khushi, Mukherjee Rimi, Sen Abhik, Pandey Krishna, Das Soumen, Mukherjee Budhaditya

机构信息

School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.

ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, India.

出版信息

Elife. 2025 May 27;14:RP102857. doi: 10.7554/eLife.102857.


DOI:10.7554/eLife.102857
PMID:40424189
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12113272/
Abstract

The management of (LD), responsible for fatal visceral leishmaniasis (VL), faces increasing challenges due to rising drug unresponsiveness, leading to increasing treatment failures. While hypolipidemia characterizes VL, LD, a cholesterol auxotroph, relies on host lipid scavenging for its intracellular survival. The aggressive pathology, in terms of increased organ parasite load, observed in hosts infected with antimony-unresponsive-LD (LD-R) as compared to their sensitive counterparts (LD-S), highlights LD-R's heightened reliance on host lipids. Here, we report that LD-R-infection in mice promotes fluid-phase endocytosis in the host macrophages, selectively accumulating neutral lipids while excluding oxidized-low-density lipoprotein (LDL). LD-R enhances the fusion of endocytosed LDL-vesicles with its phagolysosomal membrane and inhibits cholesterol mobilization from these vesicles by suppressing NPC-1. This provides LD-R amastigotes with excess lipids, supporting their rapid proliferation and membrane synthesis. This excess LDL-influx leads to an eventual accumulation of neutral lipid droplets around LD-R amastigotes, thereby increasing their unresponsiveness toward Amphotericin-B, a second-line amphiphilic antileishmanial. Notably, VL patients showing relapse with Amphotericin-B treatment exhibited significantly lower serum LDL and cholesterol than cured cases. Treatment with Aspirin, a lipid droplet blocker, reduced lipid droplets around LD-R amastigotes, restoring Amphotericin-B responsiveness.

摘要

负责致死性内脏利什曼病(VL)的杜氏利什曼原虫(LD)管理面临着越来越大的挑战,因为药物无反应性不断增加,导致治疗失败率上升。虽然低脂血症是VL的特征,但作为胆固醇营养缺陷型的LD,依靠宿主脂质清除来实现细胞内存活。与敏感型(LD-S)相比,在感染了锑无反应性-LD(LD-R)的宿主中观察到的器官寄生虫负荷增加方面的侵袭性病理学,突出了LD-R对宿主脂质的高度依赖。在这里,我们报告小鼠体内的LD-R感染促进宿主巨噬细胞的液相内吞作用,选择性积累中性脂质,同时排除氧化型低密度脂蛋白(LDL)。LD-R增强了内吞的LDL囊泡与其吞噬溶酶体膜的融合,并通过抑制NPC-1来抑制这些囊泡中的胆固醇转运。这为LD-R无鞭毛体提供了过量的脂质,支持它们的快速增殖和膜合成。这种过量的LDL流入最终导致LD-R无鞭毛体周围中性脂滴的积累,从而增加它们对二线两亲性抗利什曼药物两性霉素B的无反应性。值得注意的是,接受两性霉素B治疗后复发的VL患者的血清LDL和胆固醇显著低于治愈病例。用脂质滴阻滞剂阿司匹林治疗可减少LD-R无鞭毛体周围的脂滴,恢复对两性霉素B的反应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/8ec875c890a8/elife-102857-sa2-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/a1925aa55c4d/elife-102857-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/2e305989fcd5/elife-102857-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/21dc665bdb3b/elife-102857-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/1ffd6cea441f/elife-102857-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/8d40ee1402ea/elife-102857-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/d84ad6da4f3e/elife-102857-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/3694e606ca4e/elife-102857-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/cd2752b1e55f/elife-102857-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/656a7e3e58b4/elife-102857-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/f8dd38944194/elife-102857-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/54e650673966/elife-102857-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/337678bd6357/elife-102857-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/47883bcb85a0/elife-102857-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/011424e81981/elife-102857-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/e609a3f49bf8/elife-102857-sa2-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/8ec875c890a8/elife-102857-sa2-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/a1925aa55c4d/elife-102857-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/2e305989fcd5/elife-102857-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/21dc665bdb3b/elife-102857-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/1ffd6cea441f/elife-102857-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/8d40ee1402ea/elife-102857-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/d84ad6da4f3e/elife-102857-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/3694e606ca4e/elife-102857-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/cd2752b1e55f/elife-102857-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/656a7e3e58b4/elife-102857-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/f8dd38944194/elife-102857-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/54e650673966/elife-102857-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/337678bd6357/elife-102857-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/47883bcb85a0/elife-102857-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/011424e81981/elife-102857-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/e609a3f49bf8/elife-102857-sa2-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2092/12113272/8ec875c890a8/elife-102857-sa2-fig2.jpg

相似文献

[1]
Scrutinized lipid utilization disrupts Amphotericin-B responsiveness in clinical isolates of .

Elife. 2025-5-27

[2]
Oxidative stress-driven enhanced iron production and scavenging through Ferroportin reorientation worsens anemia in antimony-resistant Leishmania donovani infection.

PLoS Pathog. 2025-1-31

[3]
Oregano essential oil induces death in a resistant strain of isolated from a naturally infected dog through increased production of reactive oxygen species, mitochondrial damage and cell metabolic disruption.

Front Cell Infect Microbiol. 2025-6-18

[4]
visceral leishmaniasis diagnosed by metagenomics next-generation sequencing in an infant with acute lymphoblastic leukemia: a case report.

Front Public Health. 2023

[5]
Targeting MAP kinase for inhibiting Leishmania promastigotes and amastigotes stages by L-alanine derived molecules and their anticancer potential against PANC-1 cancer cell lines.

Bioorg Med Chem. 2025-10-1

[6]
Treatment options for visceral leishmaniasis: a systematic review of clinical studies done in India, 1980-2004.

Lancet Infect Dis. 2005-12

[7]
Efficacy of anti-leishmania therapy in visceral leishmaniasis among HIV infected patients: a systematic review with indirect comparison.

PLoS Negl Trop Dis. 2013-5-2

[8]
Leishmania donovani: an in vitro study of antimony-resistant amphotericin B-sensitive isolates.

Exp Parasitol. 2006-12

[9]
Amphotericin B inhibits entry of Leishmania donovani into primary macrophages.

Biochem Biophys Res Commun. 2010-8-3

[10]
Prunus amygdalus var. amara seed extract enhances the antileishmanial activity of miltefosine.

BMC Complement Med Ther. 2025-7-16

本文引用的文献

[1]
The different impact of drug-resistant on the transcription programs activated in neutrophils.

iScience. 2024-4-18

[2]
Leishmania highjack host lipid body for its proliferation in macrophages by overexpressing host Rab18 and TRAPPC9 by downregulating miR-1914-3p expression.

PLoS Pathog. 2024-2

[3]
Atlas of intraerythrocytic development using expansion microscopy.

Elife. 2023-12-18

[4]
infection upregulates and engages host macrophage Argonaute 1, and system-wide proteomics reveals Argonaute 1-dependent host response.

Front Immunol. 2023

[5]
Metabolic immunity against microbes.

Trends Cell Biol. 2024-6

[6]
Host cell environments and antibiotic efficacy in tuberculosis.

Trends Microbiol. 2024-3

[7]
Revolutionizing control strategies against Mycobacterium tuberculosis infection through selected targeting of lipid metabolism.

Cell Mol Life Sci. 2023-9-14

[8]
Setting up multicolour TIRF microscopy down to the single molecule level.

Biomol Concepts. 2023-1-1

[9]
The Role of Cytosolic Lipid Droplets in Hepatitis C Virus Replication, Assembly, and Release.

Biomed Res Int. 2023

[10]
Role of macrophage scavenger receptor MSR1 in the progression of non-alcoholic steatohepatitis.

Front Immunol. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索