Shen Junyi, Feng Suyin, Zhang Pengpeng, Qi Chang, Liu Zaoqu, Feng Yuying, Dong Chunrong, Xie Zhenyu, Gan Wenyi, Zhu Lingxuan, Mou Weiming, Zeng Dongqiang, Tang Bufu, Xiao Mingjia, Chu Guangdi, Cheng Quan, Zhang Jian, Peng Shengkun, Bai Yifeng, Wong Hank Z H, Jiang Aimin, Luo Peng, Lin Anqi
Department of Oncology, Zhujiang Hospital, Southern Medical University; Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, China.
Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, China.
Int J Surg. 2025 Jul 1;111(7):4252-4262. doi: 10.1097/JS9.0000000000002507. Epub 2025 May 28.
Given the increasing prevalence of generative AI (GenAI) models, a systematically evaluation of their performance in lung adenocarcinoma histopathological assessment is crucial. This study aimed to evaluate and compare three visual-capable GenAI models (GPT-4o, Claude-3.5-Sonnet, and Gemini-1.5-Pro) for lung adenocarcinoma histological pattern recognition and grading, as well as to explore prognostic prediction models based on GenAI feature extraction.
In this retrospective study, we analyzed 310 diagnostic slides from The Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) database to evaluate GenAI models and to develop and internally validate machine learning-based prognostic models. For independent external validation, we utilized 95 and 87 slides from obtained different institutions. The primary endpoints comprised GenAI grading accuracy (area under the receiver operating characteristic curve, AUC) and stability (intraclass correlation coefficient, ICC). Secondary endpoints included developing and assessing machine learning-based prognostic models using GenAI-extracted features from the TCGA-LUAD dataset, evaluated by Concordance index (C-index).
Among the evaluated models, claude-3.5-Sonnet demonstrated the best overall performance, achieving high grading accuracy (average AUC = 0.823) with moderate stability (ICC = 0.585) The optimal machine learning-based prognostic model, developed using features extracted by Claude-3.5-Sonnet and integrating clinical variables, demonstrated good performance in both internal and external validations, yielding an average C-index of 0.715. Meta-analysis demonstrated that this prognostic model effectively stratified patients into risk groups, with the high-risk group showing significantly worse outcomes (Hazard ratio = 5.16, 95% confidence interval = 3.09-8.62).
GenAI models demonstrated significant potential in lung adenocarcinoma pathology, with Claude-3.5-Sonnet exhibiting superior performance in grading prediction and robust prognostic capabilities. These findings indicate promising applications of AI in lung adenocarcinoma diagnosis and clinical management.
鉴于生成式人工智能(GenAI)模型的日益普及,系统评估其在肺腺癌组织病理学评估中的性能至关重要。本研究旨在评估和比较三种具备视觉能力的GenAI模型(GPT-4o、Claude-3.5-Sonnet和Gemini-1.5-Pro)在肺腺癌组织学模式识别和分级方面的表现,并探索基于GenAI特征提取的预后预测模型。
在这项回顾性研究中,我们分析了来自癌症基因组图谱肺腺癌(TCGA-LUAD)数据库的310张诊断切片,以评估GenAI模型,并开发和内部验证基于机器学习的预后模型。为了进行独立的外部验证,我们使用了从不同机构获得的95张和87张切片。主要终点包括GenAI分级准确性(受试者操作特征曲线下面积,AUC)和稳定性(组内相关系数,ICC)。次要终点包括使用从TCGA-LUAD数据集中提取的GenAI特征开发和评估基于机器学习的预后模型,通过一致性指数(C-index)进行评估。
在评估的模型中,Claude-3.5-Sonnet表现出最佳的整体性能,在分级准确性方面表现出色(平均AUC = 0.823),稳定性适中(ICC = 0.585)。使用Claude-3.5-Sonnet提取的特征并整合临床变量开发的最佳基于机器学习的预后模型,在内部和外部验证中均表现良好,平均C-index为0.715。荟萃分析表明,该预后模型有效地将患者分层为风险组,高危组的预后明显更差(风险比 = 5.16,95%置信区间 = 3.09 - 8.62)。
GenAI模型在肺腺癌病理学中显示出巨大潜力,Claude-3.5-Sonnet在分级预测和强大的预后能力方面表现出卓越性能。这些发现表明人工智能在肺腺癌诊断和临床管理中的应用前景广阔。