Yang Chunna, Sun Yiyao, Jiang Mingchen, Fan Ying, Hu Yanjun, Zhang Qianhui, Zhang Yan, Wang Yan, Jiang Xiran, Wang Zekun, Yang Zhiguang, Sun Bo, Jiang Wenyan
School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China.
Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China.
Front Cell Dev Biol. 2025 May 14;13:1525989. doi: 10.3389/fcell.2025.1525989. eCollection 2025.
OBJECTIVES: Evaluating response to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is crucial in non-small cell lung cancer (NSCLC) patients with brain metastases (BM). To explore values of multi-sequence MRI in early assessing response to EGFR-TKIs in non-small cell lung cancer (NSCLC) patients with BM. APPROACH: A primary cohort of 133 patients (January 2018 to March 2024) from center one and an external cohort of 52 patients (May 2017 to December 2022) from center two were established. Radiomics features were extracted from 4 mm brain-tumor interface (BTI) and whole BM region across T1-weighted contrast enhanced (T1CE) and T2-weighted (T2W) and T2 fluid-attenuated inversion recovery (T2-FLAIR) MRI sequences. The most relevant features were selected using the U test and least absolute shrinkage and selection operator (LASSO) method to develop the multi-sequence models based on BTI (RS-BTI-COM) and BM (RS-BM-COM). By integrating RS-BTI-COM with peritumoral edema volume (VPE), the combined model was built using logistic regression. Model performance was evaluated using the area under the ROC curve (AUC), sensitivity (SEN), specificity (SPE) and accuracy (ACC). MAIN RESULTS: The constructed RS-BTI-COM demonstrated a higher association with early response to EGFR-TKI therapy than RS-BM-COM. The combined RS-BTIplusVPE, incorporating BTI-based radiomics features and VPE, exhibited the highest AUCs (0.843-0.938), SPE (0.808-0.905) and ACC (0.712-0.875) in the training, internal validation, and external validation cohort, respectively. SIGNIFICANCE: The study developed a validated non-invasive model (RS-BTIplusVPE) based on integrating BTI-based radiomics features and VPE, which showed improved prediction of EGFR-TKI response in NSCLC patients with BM compared to tumor-focused models.
目的:评估表皮生长因子受体(EGFR)-酪氨酸激酶抑制剂(TKIs)的反应对于伴有脑转移(BM)的非小细胞肺癌(NSCLC)患者至关重要。探索多序列磁共振成像(MRI)在早期评估伴有BM的非小细胞肺癌(NSCLC)患者对EGFR-TKIs反应中的价值。 方法:建立了来自中心一的133例患者(2018年1月至2024年3月)的主要队列和来自中心二的52例患者(2017年5月至2022年12月)的外部队列。在T1加权对比增强(T1CE)、T2加权(T2W)和T2液体衰减反转恢复(T2-FLAIR)MRI序列上,从4毫米脑肿瘤界面(BTI)和整个BM区域提取影像组学特征。使用U检验和最小绝对收缩与选择算子(LASSO)方法选择最相关的特征,以建立基于BTI(RS-BTI-COM)和BM(RS-BM-COM)的多序列模型。通过将RS-BTI-COM与瘤周水肿体积(VPE)相结合,使用逻辑回归建立联合模型。使用ROC曲线下面积(AUC)、敏感性(SEN)、特异性(SPE)和准确性(ACC)评估模型性能。 主要结果:构建的RS-BTI-COM显示出比RS-BM-COM与EGFR-TKI治疗的早期反应有更高的相关性。结合基于BTI的影像组学特征和VPE的联合模型RS-BTIplusVPE在训练、内部验证和外部验证队列中分别表现出最高的AUC(0.843 - 0.938)、SPE(0.808 - 0.905)和ACC(0.712 - 0.875)。 意义:该研究基于整合基于BTI的影像组学特征和VPE开发了一种经过验证的非侵入性模型(RS-BTIplusVPE),与专注于肿瘤的模型相比,该模型在伴有BM的NSCLC患者中对EGFR-TKI反应的预测有所改善。
Cancers (Basel). 2023-7-28
Curr Top Med Chem. 2022