文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于液体衰减反转恢复序列(FLAIR)的脑肿瘤界面放射组学特征,用于早期预测非小细胞肺癌脑转移患者对表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKI)治疗的反应

FLAIR-based radiomics signature from brain-tumor interface for early prediction of response to EGFR-TKI therapy in NSCLC patients with brain metastasis.

作者信息

Yang Chunna, Sun Yiyao, Jiang Mingchen, Fan Ying, Hu Yanjun, Zhang Qianhui, Zhang Yan, Wang Yan, Jiang Xiran, Wang Zekun, Yang Zhiguang, Sun Bo, Jiang Wenyan

机构信息

School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China.

Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China.

出版信息

Front Cell Dev Biol. 2025 May 14;13:1525989. doi: 10.3389/fcell.2025.1525989. eCollection 2025.


DOI:10.3389/fcell.2025.1525989
PMID:40438144
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12116672/
Abstract

OBJECTIVES: Evaluating response to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is crucial in non-small cell lung cancer (NSCLC) patients with brain metastases (BM). To explore values of multi-sequence MRI in early assessing response to EGFR-TKIs in non-small cell lung cancer (NSCLC) patients with BM. APPROACH: A primary cohort of 133 patients (January 2018 to March 2024) from center one and an external cohort of 52 patients (May 2017 to December 2022) from center two were established. Radiomics features were extracted from 4 mm brain-tumor interface (BTI) and whole BM region across T1-weighted contrast enhanced (T1CE) and T2-weighted (T2W) and T2 fluid-attenuated inversion recovery (T2-FLAIR) MRI sequences. The most relevant features were selected using the U test and least absolute shrinkage and selection operator (LASSO) method to develop the multi-sequence models based on BTI (RS-BTI-COM) and BM (RS-BM-COM). By integrating RS-BTI-COM with peritumoral edema volume (VPE), the combined model was built using logistic regression. Model performance was evaluated using the area under the ROC curve (AUC), sensitivity (SEN), specificity (SPE) and accuracy (ACC). MAIN RESULTS: The constructed RS-BTI-COM demonstrated a higher association with early response to EGFR-TKI therapy than RS-BM-COM. The combined RS-BTIplusVPE, incorporating BTI-based radiomics features and VPE, exhibited the highest AUCs (0.843-0.938), SPE (0.808-0.905) and ACC (0.712-0.875) in the training, internal validation, and external validation cohort, respectively. SIGNIFICANCE: The study developed a validated non-invasive model (RS-BTIplusVPE) based on integrating BTI-based radiomics features and VPE, which showed improved prediction of EGFR-TKI response in NSCLC patients with BM compared to tumor-focused models.

摘要

目的:评估表皮生长因子受体(EGFR)-酪氨酸激酶抑制剂(TKIs)的反应对于伴有脑转移(BM)的非小细胞肺癌(NSCLC)患者至关重要。探索多序列磁共振成像(MRI)在早期评估伴有BM的非小细胞肺癌(NSCLC)患者对EGFR-TKIs反应中的价值。 方法:建立了来自中心一的133例患者(2018年1月至2024年3月)的主要队列和来自中心二的52例患者(2017年5月至2022年12月)的外部队列。在T1加权对比增强(T1CE)、T2加权(T2W)和T2液体衰减反转恢复(T2-FLAIR)MRI序列上,从4毫米脑肿瘤界面(BTI)和整个BM区域提取影像组学特征。使用U检验和最小绝对收缩与选择算子(LASSO)方法选择最相关的特征,以建立基于BTI(RS-BTI-COM)和BM(RS-BM-COM)的多序列模型。通过将RS-BTI-COM与瘤周水肿体积(VPE)相结合,使用逻辑回归建立联合模型。使用ROC曲线下面积(AUC)、敏感性(SEN)、特异性(SPE)和准确性(ACC)评估模型性能。 主要结果:构建的RS-BTI-COM显示出比RS-BM-COM与EGFR-TKI治疗的早期反应有更高的相关性。结合基于BTI的影像组学特征和VPE的联合模型RS-BTIplusVPE在训练、内部验证和外部验证队列中分别表现出最高的AUC(0.843 - 0.938)、SPE(0.808 - 0.905)和ACC(0.712 - 0.875)。 意义:该研究基于整合基于BTI的影像组学特征和VPE开发了一种经过验证的非侵入性模型(RS-BTIplusVPE),与专注于肿瘤的模型相比,该模型在伴有BM的NSCLC患者中对EGFR-TKI反应的预测有所改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804c/12116672/2e83e659f8db/fcell-13-1525989-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804c/12116672/e4f7f13b8fb9/fcell-13-1525989-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804c/12116672/e4f346097df1/fcell-13-1525989-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804c/12116672/1649ef22f1ba/fcell-13-1525989-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804c/12116672/2e83e659f8db/fcell-13-1525989-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804c/12116672/e4f7f13b8fb9/fcell-13-1525989-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804c/12116672/e4f346097df1/fcell-13-1525989-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804c/12116672/1649ef22f1ba/fcell-13-1525989-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804c/12116672/2e83e659f8db/fcell-13-1525989-g004.jpg

相似文献

[1]
FLAIR-based radiomics signature from brain-tumor interface for early prediction of response to EGFR-TKI therapy in NSCLC patients with brain metastasis.

Front Cell Dev Biol. 2025-5-14

[2]
Brain-Tumor Interface-Based MRI Radiomics Models to Determine EGFR Mutation, Response to EGFR-TKI and T790M Resistance Mutation in Non-Small Cell Lung Carcinoma Brain Metastasis.

J Magn Reson Imaging. 2023-12

[3]
Multiregional radiomics of brain metastasis can predict response to EGFR-TKI in metastatic NSCLC.

Eur Radiol. 2023-11

[4]
Radiomics based on brain-to-tumor interface enables prediction of metastatic tumor type of brain metastasis: a proof-of-concept study.

Radiol Med. 2025-2

[5]
Preoperative MRI-Based Radiomics of Brain Metastasis to Assess T790M Resistance Mutation After EGFR-TKI Treatment in NSCLC.

J Magn Reson Imaging. 2023-6

[6]
Habitat-Based Radiomics for Predicting EGFR Mutations in Exon 19 and 21 From Brain Metastasis.

Acad Radiol. 2024-9

[7]
Radiomics for prediction of response to EGFR-TKI based on metastasis/brain parenchyma (M/BP)-interface.

Radiol Med. 2022-12

[8]
Improved Prediction of Epidermal Growth Factor Receptor Status by Combined Radiomics of Primary Nonsmall-Cell Lung Cancer and Distant Metastasis.

J Comput Assist Tomogr. 2024

[9]
Radiomics evaluates the EGFR mutation status from the brain metastasis: a multi-center study.

Phys Med Biol. 2022-6-8

[10]
Combined radiomics of primary tumour and bone metastasis improve the prediction of EGFR mutation status and response to EGFR-TKI therapy for NSCLC.

Phys Med. 2023-12

本文引用的文献

[1]
Texture Feature Differentiation of Glioblastoma and Solitary Brain Metastases Based on Tumor and Tumor-brain Interface.

Acad Radiol. 2025-1

[2]
Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas.

Eur Radiol. 2024-4

[3]
Radiomics and Machine Learning in Brain Tumors and Their Habitat: A Systematic Review.

Cancers (Basel). 2023-7-28

[4]
Brain-Tumor Interface-Based MRI Radiomics Models to Determine EGFR Mutation, Response to EGFR-TKI and T790M Resistance Mutation in Non-Small Cell Lung Carcinoma Brain Metastasis.

J Magn Reson Imaging. 2023-12

[5]
Multiregional radiomics of brain metastasis can predict response to EGFR-TKI in metastatic NSCLC.

Eur Radiol. 2023-11

[6]
MRI/PET multimodal imaging of the innate immune response in skeletal muscle and draining lymph node post vaccination in rats.

Front Immunol. 2022

[7]
Clinical implementation of artificial intelligence in neuroradiology with development of a novel workflow-efficient picture archiving and communication system-based automated brain tumor segmentation and radiomic feature extraction.

Front Neurosci. 2022-10-13

[8]
Radiomics for prediction of response to EGFR-TKI based on metastasis/brain parenchyma (M/BP)-interface.

Radiol Med. 2022-12

[9]
Prognostic analysis and risk stratification of lung adenocarcinoma undergoing EGFR-TKI therapy with time-serial CT-based radiomics signature.

Eur Radiol. 2023-2

[10]
PET Imaging of EGFR Expression: An Overview of Radiolabeled EGFR TKIs.

Curr Top Med Chem. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索