Suppr超能文献

基于主动学习的二进制优化的W波段频率选择数字超表面

W-band frequency selective digital metasurface using active learning-based binary optimization.

作者信息

Kim Young-Bin, Park Jaehyeon, Kim Jun-Young, Seo Seok-Beom, Kim Sun-Kyung, Lee Eungkyu

机构信息

Department of Applied Physics, Kyung Hee University, Yongin-Si, Gyeonggi-Do, 17104, Republic of Korea.

Department of Electronic Engineering, Kyung Hee University, Yongin-Si, Gyeonggi-Do, 17104, Republic of Korea.

出版信息

Nanophotonics. 2025 Feb 7;14(10):1597-1606. doi: 10.1515/nanoph-2024-0628. eCollection 2025 May.

Abstract

The W-band is essential for applications like high-resolution imaging and advanced monitoring systems, but high-frequency signal attenuation leads to poor signal-to-noise ratios, posing challenges for compact and multi-channel systems. This necessitates distinct frequency selective surfaces (FSS) on a single substrate, a complex task due to inherent substrate resonance modes. In this study, we use a digital metasurface platform to design W-band FSS on a glass substrate, optimized through binary optimization assisted by active learning. The digital metasurface is composed of a periodic array of sub-wavelength unit cells, each containing hundreds of metal or dielectric pixels that act as binary states. By utilizing a machine learning model, we apply active learning-aided binary optimization to determine the optimal binary state configurations for a given target FSS profile. Specifically, we identify optimal designs for distinct FSS on a conventional glass substrate, with transmittance peaks at 79.3 GHz and Q-factors of 32.7.

摘要

W波段对于高分辨率成像和先进监测系统等应用至关重要,但高频信号衰减会导致信噪比不佳,给紧凑型多通道系统带来挑战。这就需要在单个基板上采用独特的频率选择表面(FSS),由于基板固有的共振模式,这是一项复杂的任务。在本研究中,我们使用数字超表面平台在玻璃基板上设计W波段FSS,并通过主动学习辅助的二进制优化进行优化。数字超表面由亚波长单元细胞的周期性阵列组成,每个单元细胞包含数百个充当二进制状态的金属或介电像素。通过利用机器学习模型,我们应用主动学习辅助的二进制优化来确定给定目标FSS轮廓的最佳二进制状态配置。具体而言,我们在传统玻璃基板上确定了不同FSS的最佳设计,其透射率峰值为79.3 GHz,品质因数为32.7。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/12116257/986f819084ed/j_nanoph-2024-0628_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验