Song Lin, Liu Chunyan, Yang Anqi, Zhang Xiaohai, Wang Xintong, Teng Yanjiao, Lu Decheng, Kuang Xiaocong, Wang Chunming, Zhang Junfeng, Sun Xuyong, Dong Lei
State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.
Diabetes. 2025 Aug 1;74(8):1385-1398. doi: 10.2337/db24-0856.
Intraportal islet transplantation to treat insulin-dependent diabetes has been clinically validated. However, the hypoxic environment and sinusoidal architecture of the liver are unsuitable for the long-term survival of transplanted islets, leading to the loss of therapeutic effects within 1 year. The spleen has oxygen levels that meet islet needs, but intense instant blood-mediated inflammatory reactions (IBMIRs) and low extracellular matrix (ECM) concentrations hinder islet engraftment and survival. In this study, we developed constructs of islets encapsulated by hepatocytes and fibroblasts. The hepatocytes and fibroblasts create a protective coating that reduces IBMIRs because of the low expression of von Willebrand factor in hepatocytes and supports normal islet survival through ECM production by fibroblasts. These constructs can be easily injected into the mouse spleen. The hepatocyte-fibroblast encapsulation significantly reduces islet mortality during the posttransplantation stress period, enabling rapid engraftment and vascularization in the spleen. The high-oxygen environment of the spleen then supports long-term (>1 year) islet survival and sustained glycemic regulation. Additionally, this method significantly lowers the critical islet dose required for transplantation. The live cell-shielding strategy developed in this study represents a novel approach in islet transplantation and functional regeneration, demonstrating promising clinical potential.
Instant blood-mediated inflammatory reactions (IBMIRs) and low extracellular matrix (ECM) concentrations hinder islet implantation and survival in the spleen. Islets were encapsulated in hepatocytes and fibroblasts. The low expression of von Willebrand factor in hepatocytes enables them to form a protective coating with fibroblasts. This coating reduces IBMIRs and supports islet survival through ECM production by fibroblasts. The hepatocyte-fibroblast encapsulation significantly reduces islet mortality during the posttransplantation stress period, enabling rapid engraftment and vascularization in the spleen.
门静脉内胰岛移植治疗胰岛素依赖型糖尿病已得到临床验证。然而,肝脏的缺氧环境和肝血窦结构不适合移植胰岛的长期存活,导致治疗效果在1年内丧失。脾脏的氧水平能满足胰岛需求,但强烈的即时血液介导的炎症反应(IBMIRs)和低细胞外基质(ECM)浓度阻碍胰岛植入和存活。在本研究中,我们构建了由肝细胞和成纤维细胞包裹的胰岛结构体。肝细胞和成纤维细胞形成了一层保护涂层,由于肝细胞中血管性血友病因子表达较低,可减少IBMIRs,并通过成纤维细胞产生ECM来支持胰岛正常存活。这些结构体可轻松注射到小鼠脾脏中。肝细胞-成纤维细胞包裹显著降低了移植后应激期胰岛的死亡率,使胰岛能在脾脏中快速植入并血管化。脾脏的高氧环境随后支持胰岛长期(>1年)存活和持续的血糖调节。此外,该方法显著降低了移植所需的关键胰岛剂量。本研究中开发的活细胞屏蔽策略代表了胰岛移植和功能再生的一种新方法,显示出有前景的临床潜力。
即时血液介导的炎症反应(IBMIRs)和低细胞外基质(ECM)浓度阻碍胰岛在脾脏中的植入和存活。胰岛被包裹在肝细胞和成纤维细胞中。肝细胞中血管性血友病因子的低表达使其能与成纤维细胞形成保护涂层。该涂层可减少IBMIRs,并通过成纤维细胞产生ECM来支持胰岛存活。肝细胞-成纤维细胞包裹显著降低了移植后应激期胰岛的死亡率,使胰岛能在脾脏中快速植入并血管化。