Suppr超能文献

一种通过共价键驱动的金属有机框架增强的交联聚碳酸酯基混合电解质,用于无枝晶固态锂金属电池。

A crosslinked polycarbonate-based hybrid electrolyte enhanced by covalent bonding-driven MOF for dendrite-free solid-state lithium metal batteries.

作者信息

Zhu Jiaxing, Liu Xuewei, Zeng Xiaoyue, Zhu Huirong, Jia Shuanglin, Qiao Yufeng, Ren Luyao, Long Jianlin, Lan Jinle, Yu Yunhua, Yang Xiaoping

机构信息

State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, PR China.

State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, PR China.

出版信息

J Colloid Interface Sci. 2025 Nov;697:137993. doi: 10.1016/j.jcis.2025.137993. Epub 2025 May 26.

Abstract

In-situ synthesizing composite polymer electrolytes (CPEs) in high-voltage Li-metal batteries is a promising strategy for achieving high energy density and safety. However, CPEs encounter several challenges, including limited ion migration ability, inferior electrochemical stability, and poor mechanical strength against lithium dendrites, which is caused by poor compatibility of organic-inorganic interface. Herein, we prepared an organic-inorganic hybrid polycarbonate-based solid-state electrolyte (denoted as PVM@PVZs) with a cross-linked structure using bis-acrylamide-based crosslinker and covalent bonding-driven V-ZIF-67 obtained by vinyl-functionalizing Metal Organic Framework (MOF). The prepared V-ZIF-67 is evenly dispersed on the surface of PVDF-HFP fibers via the Electrospinning & Electrospraying technique to improve the interfacial compatibility and help build continuous ion transport channels in the polymer matrix. Meanwhile, the presence of rich Lewis acidic sites and high specific surface area (1162.72 m g) of V-ZIF-67 efficiently restricts the movement of anions to facilitate lithium-ion transport. These factors enable the optimal hybrid electrolyte (PVM@PVZ-3 containing 20 wt% of V-ZIF-67) to demonstrate high ionic conductivity (7.23 × 10 S cm at 25 °C) and high lithium-ion transference number (0.68). The introduction of covalent bonding and bis-acrylamide-based crosslinker provides sufficient electrochemical stability and mechanical strength for PVM@PVZ-3 to have a wide electrochemical window (5.27 V) and good Li dendrite suppression. Therefore, Li||Li symmetric cell can be stably cycled for 2400 h at a current density of 0.1 mA cm, and the LiFePO||Li and LiNiCoMnO||Li full cells have excellent cycling performance, demonstrating a great prospect of the hybrid electrolyte for practical application in solid-state, high-voltage Li-metal batteries.

摘要

在高压锂金属电池中原位合成复合聚合物电解质(CPEs)是实现高能量密度和安全性的一种有前景的策略。然而,CPEs面临几个挑战,包括离子迁移能力有限、电化学稳定性较差以及对锂枝晶的机械强度不足,这是由有机-无机界面的不良相容性引起的。在此,我们使用双丙烯酰胺基交联剂和通过乙烯基官能化金属有机框架(MOF)获得的共价键驱动的V-ZIF-67制备了一种具有交联结构的有机-无机杂化聚碳酸酯基固态电解质(表示为PVM@PVZs)。通过静电纺丝和电喷雾技术将制备的V-ZIF-67均匀分散在PVDF-HFP纤维表面,以改善界面相容性并有助于在聚合物基质中建立连续的离子传输通道。同时,V-ZIF-67丰富的路易斯酸性位点和高比表面积(1162.72 m²/g)的存在有效地限制了阴离子的移动,以促进锂离子传输。这些因素使最佳混合电解质(含有20 wt% V-ZIF-67的PVM@PVZ-3)在25°C时表现出高离子电导率(7.23×10⁻⁴ S/cm)和高锂离子迁移数(0.68)。共价键和双丙烯酰胺基交联剂的引入为PVM@PVZ-3提供了足够的电化学稳定性和机械强度,使其具有宽电化学窗口(5.27 V)和良好的锂枝晶抑制能力。因此,Li||Li对称电池在0.1 mA/cm²的电流密度下可以稳定循环2400小时,并且LiFePO₄||Li和LiNiCoMnO₄||Li全电池具有优异的循环性能,证明了这种混合电解质在固态高压锂金属电池实际应用中的巨大前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验