文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用门控循环单元和SHAP可解释性为帕金森病患者提供个性化药物推荐。

Personalized medication recommendations for Parkinson's disease patients using gated recurrent units and SHAP interpretability.

作者信息

Riasi Atiye, Delrobaei Mehdi, Salari Mehri

机构信息

Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran.

Department of Mechatronics, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran.

出版信息

Sci Rep. 2025 May 30;15(1):19074. doi: 10.1038/s41598-025-04217-8.


DOI:10.1038/s41598-025-04217-8
PMID:40447777
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12125215/
Abstract

Managing Parkinson's disease (PD) through medication can be challenging due to varying symptoms and disease duration. This study aims to demonstrate the potential of sequence-by-sequence algorithms in recommending personalized medication combinations for patients with PD based on their previous visits. Our proposed method employs a gated recurrent unit model to predict accurate combinations of critical medication types for PD based on each patient's motor symptoms and prescribed medication from previous visits. We built a multi-label model with gated recurrent units on two data architectures: (1) personalized input using each patient's previous visits as a sample and (2) non-personalized input treating each visit as an independent sample. The 10-fold cross-validation results showed that the personalized architecture model outperforms the non-personalized model in accuracy (0.92), precision (0.94), recall (0.94), F1-score (0.94), Hamming loss (0.03), and macro average area under the receiver operating characteristic (0.94). To interpret the model's predictions, we employed SHapley Additive exPlanations (SHAP) values, which provide insights into the importance of variables both globally (across the entire model) and at the individual patient level. The results contribute to the sequential-based decision support system potentially enhancing the remote management of PD pharmacologic issues.

摘要

由于帕金森病(PD)症状各异且病程不同,通过药物治疗来管理该病具有挑战性。本研究旨在证明序列到序列算法在根据帕金森病患者的既往就诊情况推荐个性化药物组合方面的潜力。我们提出的方法采用门控循环单元模型,根据每位患者的运动症状和既往就诊时开具的药物,预测帕金森病关键药物类型的准确组合。我们在两种数据架构上构建了带有门控循环单元的多标签模型:(1)使用每位患者的既往就诊情况作为样本的个性化输入,以及(2)将每次就诊视为独立样本的非个性化输入。10倍交叉验证结果表明,个性化架构模型在准确率(0.92)、精确率(0.94)、召回率(0.94)、F1分数(0.94)、汉明损失(0.03)以及接收器操作特征曲线下的宏平均面积(0.94)方面均优于非个性化模型。为了解释模型的预测结果,我们采用了夏普利值(SHapley Additive exPlanations,SHAP),它能从全局(整个模型)和个体患者层面深入了解变量的重要性。这些结果有助于基于序列的决策支持系统潜在地加强帕金森病药物问题的远程管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a915/12125215/ab4b380ef4b9/41598_2025_4217_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a915/12125215/6ccddb7e1277/41598_2025_4217_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a915/12125215/dd7744dbe93f/41598_2025_4217_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a915/12125215/1bc54e081722/41598_2025_4217_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a915/12125215/3b78ececd445/41598_2025_4217_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a915/12125215/ab4b380ef4b9/41598_2025_4217_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a915/12125215/6ccddb7e1277/41598_2025_4217_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a915/12125215/dd7744dbe93f/41598_2025_4217_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a915/12125215/1bc54e081722/41598_2025_4217_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a915/12125215/3b78ececd445/41598_2025_4217_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a915/12125215/ab4b380ef4b9/41598_2025_4217_Fig5_HTML.jpg

相似文献

[1]
Personalized medication recommendations for Parkinson's disease patients using gated recurrent units and SHAP interpretability.

Sci Rep. 2025-5-30

[2]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[3]
Development and validation of a machine learning-based diagnostic model for Parkinson's disease in community-dwelling populations: Evidence from the China health and retirement longitudinal study (CHARLS).

Parkinsonism Relat Disord. 2025-1

[4]
A decision support system based on recurrent neural networks to predict medication dosage for patients with Parkinson's disease.

Sci Rep. 2024-4-10

[5]
Explainable artificial intelligence to diagnose early Parkinson's disease via voice analysis.

Sci Rep. 2025-4-5

[6]
Development and validation of an interpretable machine learning model for predicting in-hospital mortality for ischemic stroke patients in ICU.

Int J Med Inform. 2025-6

[7]
Intelligent Prediction Platform for Sepsis Risk Based on Real-Time Dynamic Temporal Features: Design Study.

JMIR Med Inform. 2025-5-30

[8]
Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson's disease.

Comput Methods Programs Biomed. 2023-6

[9]
Decision Support for Medication Change of Parkinson's Disease Patients.

Comput Methods Programs Biomed. 2020-11

[10]
Development and internal validation of machine learning models for personalized survival predictions in spinal cord glioma patients.

Spine J. 2024-6

本文引用的文献

[1]
A decision support system based on recurrent neural networks to predict medication dosage for patients with Parkinson's disease.

Sci Rep. 2024-4-10

[2]
Disease progression strikingly differs in research and real-world Parkinson's populations.

NPJ Parkinsons Dis. 2024-3-13

[3]
Machine learning in medication prescription: A systematic review.

Int J Med Inform. 2023-12

[4]
Artificial intelligence for dementia prevention.

Alzheimers Dement. 2023-12

[5]
Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review.

Rheumatol Int. 2023-11

[6]
Artificial Intelligence and Machine Learning Approaches to Facilitate Therapeutic Drug Management and Model-Informed Precision Dosing.

Ther Drug Monit. 2023-4-1

[7]
Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda.

J Ambient Intell Humaniz Comput. 2023

[8]
Artificial intelligence in drug discovery: applications and techniques.

Brief Bioinform. 2022-1-17

[9]
Artificial Intelligence Surgery: How Do We Get to Autonomous Actions in Surgery?

Sensors (Basel). 2021-8-17

[10]
Application of Big Data and Artificial Intelligence in COVID-19 Prevention, Diagnosis, Treatment and Management Decisions in China.

J Med Syst. 2021-7-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索