Suppr超能文献

新型短链全氟烷基磺酸替代品潜在毒性靶点及分子机制的系统探索:基于毒性网络分析、机器学习和仿生计算的全氟丁酸和全氟丁烷磺酸诱导的肝细胞癌

Systematic Exploration of Potential Toxicity Targets and Molecular Mechanisms of Emerging Short-Chain PFAS Substitutes: PFBA- and PFBS-Induced Hepatocellular Carcinoma Based on Toxicity Network Analysis, Machine Learning, and Biomimetic Calculations.

作者信息

Zhang Zirui, Wang Jin, Zhang Zhongyi, Gan Qianrong, He Yunliang, Chen Donghui, Zhang Yong, Zhao Mei

机构信息

Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.

College of Computer Science, Chengdu University, Chengdu, Sichuan, China.

出版信息

J Appl Toxicol. 2025 Oct;45(10):2005-2019. doi: 10.1002/jat.4818. Epub 2025 May 30.

Abstract

Perfluorobutanoic acid (PFBA) and perfluorobutanesulfonic acid (PFBS) are short-chain alternatives to traditional perfluoroalkyl and polyfluoroalkyl substances (PFASs). Long-term exposure to these pollutants is closely associated with hepatocellular carcinoma (HCC). However, the toxic targets and mechanisms underlying PFBA- and PFBS-induced HCC remain unclear. To address this knowledge gap, this study employed a multifaceted approach encompassing network toxicology, molecular docking, and molecular dynamic simulation. Thirty-six core targets associated with PFBA- and PFBS-induced HCC were identified, and 12 key genes were initially screened through network toxicity analysis. Subsequently, based on the TCGA and ICGC datasets, three classical algorithms were applied to screen key genes: PPARG, ESR1, and ALB. Further exploration of the HCC-related dataset from the GEO database identified six critical genes: PPARG, ESR1, CD36, ABCA1, ACACA, and ALB. Survival analysis and ROC analysis based on the TCGA dataset revealed and validated the strong association between the expression levels of key genes (PPARG, ESR1, and ACACA). Single-gene GSEA showed that these three key genes may induce HCC through multiple biological pathways via interfering with the normal growth and development of hepatocytes and promoting inflammation and cell proliferation. Ultimately, molecular dynamics demonstrated the strong binding affinities between PFBA, PFBS, and the three protein receptors, with the best stability and flexibility of the interaction between PFBS and PPARG. These findings provide insights into the theoretical foundation for applying network toxicology, molecular docking, and molecular dynamic simulations in environmental pollutant research.

摘要

全氟丁酸(PFBA)和全氟丁烷磺酸(PFBS)是传统全氟烷基和多氟烷基物质(PFASs)的短链替代物。长期暴露于这些污染物与肝细胞癌(HCC)密切相关。然而,PFBA和PFBS诱导HCC的毒性靶点和机制仍不清楚。为了填补这一知识空白,本研究采用了包括网络毒理学、分子对接和分子动力学模拟在内的多方面方法。确定了36个与PFBA和PFBS诱导的HCC相关的核心靶点,并通过网络毒性分析初步筛选出12个关键基因。随后,基于TCGA和ICGC数据集,应用三种经典算法筛选关键基因:PPARG、ESR1和ALB。对来自GEO数据库的HCC相关数据集的进一步探索确定了六个关键基因:PPARG、ESR1、CD36、ABCA1、ACACA和ALB。基于TCGA数据集的生存分析和ROC分析揭示并验证了关键基因(PPARG、ESR1和ACACA)表达水平之间的强关联。单基因GSEA表明,这三个关键基因可能通过干扰肝细胞的正常生长发育以及促进炎症和细胞增殖,通过多种生物学途径诱导HCC。最终,分子动力学证明了PFBA、PFBS与三种蛋白质受体之间具有很强的结合亲和力,其中PFBS与PPARG之间的相互作用具有最佳的稳定性和灵活性。这些发现为在环境污染物研究中应用网络毒理学、分子对接和分子动力学模拟提供了理论基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验