Ajeeb Rana, Catelain Chloé, Joshi Harsh A, Radyna Danuta, Clegg John R
Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, USA.
Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, OK, OK, USA; Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, OK, OK, USA; Institute for Biomedical Engineering, Science and Technology (IBEST), The University of Oklahoma, Norman, OK, USA.
Acta Biomater. 2025 Jul 1;201:604-617. doi: 10.1016/j.actbio.2025.05.066. Epub 2025 May 29.
Cytokines are potent endogenous modulators of innate immunity, making them key mediators of macrophage plasticity for immunotherapy. However, the clinical translation of recombinant cytokines as therapeutics is limited by systemic side effects, caused by cytokines' pleiotropy, potency, and non-specific biodistribution following systemic dosing. We developed a cytokine delivery platform utilizing poly(acrylamide-co-methacrylic acid) synthetic nanogels as a biodegradable substrate for conjugated recombinant cytokines (i.e., IFNγ, IL4, or IL10), called Synthetic Nano-CytoKines or "SyNK". We evaluated the phenotypic response of macrophages to these conjugates following prophylactic or therapeutic dosing, in the presence or absence of soluble inflammatory signals. Our data confirmed that SyNK is highly cytocompatible with murine macrophages, preserves the activity of conjugated recombinant cytokines to both macrophages and dendritic cells, and minimizes systemic exposure to freely soluble recombinant cytokines. Intrinsic activity of the nanomaterial was modest, acting in combination with the conjugated cytokine, and resulted in unique phenotypes with IL4-SyNK and IL10-SyNK stimulation that could potentially be leveraged for therapeutic applications. We further demonstrated that RAW264.7 macrophages adopt distinct alternative phenotypes upon IL4 or IL10 stimulation in different classically polarizing microenvironments, as measured by spectral flow cytometry and secretome multiplex, which are similar for soluble recombinant cytokine and the corresponding SyNK. These findings offer a potential mechanism through which IL4 or IL10-SyNK can redirect the classically activated macrophage antigen presentation, T cell co-stimulation, or microenvironment regulatory functions for therapeutic purposes. STATEMENT OF SIGNIFICANCE: Cytokines have been extensively investigated as immune therapies, but their clinical translation is limited by their systemic toxicity and frequent dosing regimens. Existing approaches have improved cytokine stability and local delivery but still face challenges in systemic administration and controlling immune response. We developed a cytokine delivery platform using biodegradable poly(acrylamide-co-methacrylic acid) nanogels to conjugate cytokines (e.g. IFNγ, IL4, or IL10) aimed at systemic macrophage immunotherapy. We show that our platform preserves cytokine activity and eliminates the release of free cytokine. We further explore, for the first time, how different stimuli in the macrophage environment influence their response to the cytokine bioconjugates. Our work provides thorough insights into macrophage plasticity and addresses key limitations of current strategies.
细胞因子是先天性免疫的强效内源性调节因子,使其成为免疫治疗中巨噬细胞可塑性的关键介质。然而,重组细胞因子作为治疗药物的临床应用受到全身副作用的限制,这些副作用是由细胞因子的多效性、效力以及全身给药后非特异性的生物分布所引起的。我们开发了一种细胞因子递送平台,利用聚(丙烯酰胺 - 共 - 甲基丙烯酸)合成纳米凝胶作为共轭重组细胞因子(即IFNγ、IL4或IL10)的可生物降解底物,称为合成纳米细胞因子或“SyNK”。我们评估了在预防性或治疗性给药后,在存在或不存在可溶性炎症信号的情况下,巨噬细胞对这些共轭物的表型反应。我们的数据证实,SyNK与小鼠巨噬细胞具有高度的细胞相容性,保留了共轭重组细胞因子对巨噬细胞和树突状细胞的活性,并将全身暴露于游离可溶性重组细胞因子的情况降至最低。纳米材料的内在活性适中,与共轭细胞因子协同作用,并在IL4 - SyNK和IL10 - SyNK刺激下产生独特的表型,这些表型可能用于治疗应用。我们进一步证明,通过光谱流式细胞术和分泌组多重分析测量,RAW264.7巨噬细胞在不同的经典极化微环境中受到IL4或IL10刺激时会呈现出不同的替代表型,可溶性重组细胞因子和相应的SyNK的情况相似。这些发现提供了一种潜在机制,通过该机制IL4或IL10 - SyNK可以为治疗目的重定向经典激活的巨噬细胞抗原呈递、T细胞共刺激或微环境调节功能。重要性声明:细胞因子作为免疫疗法已被广泛研究,但其临床应用受到全身毒性和频繁给药方案的限制。现有方法提高了细胞因子的稳定性和局部递送,但在全身给药和控制免疫反应方面仍面临挑战。我们开发了一种细胞因子递送平台,使用可生物降解的聚(丙烯酰胺 - 共 - 甲基丙烯酸)纳米凝胶来共轭细胞因子(如IFNγ、IL4或IL10),旨在进行全身巨噬细胞免疫治疗。我们表明我们的平台保留了细胞因子的活性并消除了游离细胞因子的释放。我们首次进一步探索了巨噬细胞环境中的不同刺激如何影响它们对细胞因子生物共轭物的反应。我们的工作为巨噬细胞可塑性提供了深入见解,并解决了当前策略的关键局限性。