Huang Sung-Hao, Lin Ying-Chi, Chen Ling, Unankard Sayan, Tseng Vincent S, Tsao Hsuan-Ming, Tang Gau-Jun
Division of Cardiology, Department of Internal Medicine, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan.
Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist, Taipei, Taiwan.
Med Biol Eng Comput. 2025 May 31. doi: 10.1007/s11517-025-03385-z.
Subclinical atrial fibrillation (SCAF), also known as atrial high-rate episodes (AHREs), refers to asymptomatic heart rate elevations associated with increased risks of atrial fibrillation and cardiovascular events. Although deep learning (DL) models leveraging echocardiographic images from ultrasound are widely used for cardiac function analysis, their application to AHRE prediction remains unexplored. This study introduces a novel DL-based framework for automatic AHRE detection using echocardiograms. The approach encompasses left atrium (LA) segmentation, LA strain feature extraction, and AHRE classification. Data from 117 patients with cardiac implantable electronic devices undergoing echocardiography were analyzed, with 80% allocated to the development set and 20% to the test set. LA segmentation accuracy was quantified using the Dice coefficient, yielding scores of 0.923 for the LA cavity and 0.741 for the LA wall. For AHRE classification, metrics such as area under the curve (AUC), accuracy, sensitivity, and specificity were employed. A transformer-based model integrating patient characteristics demonstrated robust performance, achieving mean AUC of 0.815, accuracy of 0.809, sensitivity of 0.800, and specificity of 0.783 for a 24-h AHRE duration threshold. This framework represents a reliable tool for AHRE assessment and holds significant potential for early SCAF detection, enhancing clinical decision-making and patient outcomes.
亚临床房颤(SCAF),也称为心房高率发作(AHREs),是指与房颤和心血管事件风险增加相关的无症状心率升高。尽管利用超声心动图图像的深度学习(DL)模型广泛用于心脏功能分析,但其在AHRE预测中的应用仍未得到探索。本研究介绍了一种使用超声心动图自动检测AHRE的基于DL的新型框架。该方法包括左心房(LA)分割、LA应变特征提取和AHRE分类。分析了117例接受超声心动图检查的心脏植入式电子设备患者的数据,其中80%分配到开发集,20%分配到测试集。使用Dice系数对LA分割准确性进行量化,LA腔得分为0.923,LA壁得分为0.741。对于AHRE分类,采用曲线下面积(AUC)、准确性、敏感性和特异性等指标。整合患者特征的基于Transformer的模型表现出强大的性能,对于24小时AHRE持续时间阈值,平均AUC为0.815,准确性为0.809,敏感性为0.800,特异性为0.783。该框架是AHRE评估的可靠工具,在早期SCAF检测方面具有巨大潜力,可加强临床决策和改善患者预后。