基于高级分层计算建模的铂(II)纳米复合物合理开发,以改善肺癌治疗。
Advanced hierarchical computational modeling-based rational development of platinum (II) nanocomplex to improve lung cancer therapy.
作者信息
Huang Haozhe, Ji Beihong, Huang Yixian, Li Shichen, Luo Zhangyi, Chen Shangyu, Li Sihan, Chen Yuang, Bain Daniel J, Sun Jingjing, Yang Da, Burns Timothy F, Wang Junmei, Li Song
机构信息
Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
出版信息
Adv Funct Mater. 2025 Feb 12;35(7). doi: 10.1002/adfm.202411334. Epub 2024 Sep 27.
Cancer stem cells (CSCs), harboring stem cell-like properties involving self-renewal and aberrant differentiation potential, have been known to be one of the determining factors that contribute to therapeutic resistance and tumor recurrence. However, much remains to be understood about the reprogramming network leading to the generation of CSCs driven by chemotherapy. In this study, guided by bioinformatics study, we uncover and provide deeper insight into the CSC enrichment mechanism driven by cisplatin (CDDP) treatment. We discover that CDDP can repopulate the level of CSC by activating AKT1 oncogenic pathway that is further enhanced by COX-2 inflammatory signaling. Simultaneously blocking these two pathways can synergistically restrain the number of CSCs. Under the guidance of a series of advanced hierarchical computational modeling, including molecular docking, molecular dynamics (MD) simulation and binding free energy analysis, MK-2206 is selected as the AKT1 inhibitor to achieve optimal codelivery of CDDP, MK-2206 and 5-ASA (COX-2 inhibitor) through the use of 5-ASA-derivatized dual functional immunostimulatory nanocarrier (PASA). This triple combination (PASA/CDDP/MK-2206) significantly reduces tumor burden in both orthotopic and metastatic lung cancer models. Mechanistic studies show that this improved therapeutic activity is due to elimination of CSCs and reversal of the immunosuppressive tumor microenvironment. Our study suggests that PASA/CDDP/MK-2206 may represent a simple and effective lung cancer therapy via reversing CSCs-associated chemoresistance.
癌症干细胞(CSCs)具有类似干细胞的特性,包括自我更新和异常分化潜能,已知是导致治疗抗性和肿瘤复发的决定性因素之一。然而,对于由化疗驱动的导致CSCs产生的重编程网络,仍有许多有待了解之处。在本研究中,在生物信息学研究的指导下,我们揭示并深入洞察了顺铂(CDDP)治疗驱动的CSC富集机制。我们发现CDDP可以通过激活AKT1致癌途径来恢复CSC的水平,而COX-2炎症信号会进一步增强该途径。同时阻断这两条途径可以协同抑制CSCs的数量。在一系列先进的分层计算模型的指导下,包括分子对接、分子动力学(MD)模拟和结合自由能分析,选择MK-2206作为AKT1抑制剂,通过使用5-ASA衍生的双功能免疫刺激纳米载体(PASA)实现CDDP、MK-2206和5-ASA(COX-2抑制剂)的最佳共递送。这种三联组合(PASA/CDDP/MK-2206)在原位和转移性肺癌模型中均显著降低了肿瘤负担。机制研究表明,这种改善的治疗活性归因于CSCs的消除和免疫抑制性肿瘤微环境的逆转。我们的研究表明,PASA/CDDP/MK-2206可能代表一种通过逆转与CSCs相关的化疗抗性来治疗肺癌的简单有效方法。
相似文献
Chem Biol Interact. 2018-10-3
World J Stem Cells. 2020-11-26
引用本文的文献
Chin Med. 2025-7-1
Biogerontology. 2025-4-21
本文引用的文献
Sci Adv. 2021-12-10
Nat Commun. 2021-11-18
Front Pharmacol. 2021-3-15