Suppr超能文献

理解双阳离子离子液体的实验兼容杀菌活性:通过分子动力学模拟对官能团效应的机理洞察。

Understanding Experimentally Compatible Bactericidal Activity of Dicationic Ionic Liquids: A Mechanistic Insight into the Effect of Functional Groups by MD Simulations.

作者信息

Torabi Seyed Mohammad, Kowsari Mohammad H, Hassanpour Mahnaz, Nikfarjam Nasser

机构信息

Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.

Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.

出版信息

J Phys Chem B. 2025 Jun 19;129(24):5961-5975. doi: 10.1021/acs.jpcb.5c00942. Epub 2025 Jun 2.

Abstract

Dicationic ionic liquids (DCILs) show a promising innovative potential as antibacterial agents to help overcome the antibiotic-resistant bacteria crisis worldwide. Changing ionic head groups, side chain lengthening, functionalizing, and modifying the hydrophobic/hydrophilic character of the IL structure influence their interaction strength with the bacterial cell wall. Nevertheless, deep molecular-level insights are a prerequisite in fully realizing the antibacterial mechanism of DCILs with varied functionalities and structures. Here, we selected three DCILs based on the recently investigated bis-imidazolium dibromide family, DCIL-1, DCIL-3, and DCIL-5, with the functional groups 2-hydroxybutyl, 2-hydroxy-3-(methacryloyloxy)propyl, and 2-hydroxy-3-phenoxypropyl, respectively. Current all-atom molecular dynamics (MD) simulations and free-energy calculations consistency with our earlier experimental assays confirmed the order of (DCIL-5 > DCIL-1 > DCIL-3) for their bactericidal activity against (). The dication insertion is the dominant driving force for the bacterial bilayer disruption and rupture. The MD results revealed that the antibacterial activity of bulky DCILs was due to the interplay between the electrostatic and hydrophobic interactions. It further disclosed the antibacterial mechanism consisting of the dication adsorption on the bacterial membrane lipids through electrostatic attraction, the flip motion of dications for finding suitable orientation in close vicinity to the lipid bilayer's surface, key hydrogen-bond forming simultaneously with the lipid's head groups to promote the penetration of the adjacent hydrophobic group to the lipid bilayer center. The penetration process could increase the average surface area per lipid, decrease the lipid tail ordering and the bilayer thickness, and improve the lipid lateral diffusion and bilayer fluidity, resulting in lipid bilayer rupture and bacterial membrane lysis. The strongest antibacterial activity was demonstrated by DCIL-5, which had a 2-hydroxyl-3-phenoxypropyl functional group and a high relative hydrophobicity and lipophilicity that allowed it to permeate the bacterial cell walls efficiently. This research sheds light on the microscopic interactions between DCILs having various functional groups and Gram-negative bacterial membranes, providing crucial insights for screening and the rational design of new cationic agents as efficient antibacterial materials.

摘要

双阳离子离子液体(DCILs)作为抗菌剂展现出了颇具前景的创新潜力,有助于克服全球范围内的抗生素耐药细菌危机。改变离子头基、延长侧链、官能化以及调节离子液体(IL)结构的疏水/亲水性会影响其与细菌细胞壁的相互作用强度。然而,深入的分子层面见解是充分理解具有不同功能和结构的DCILs抗菌机制的先决条件。在此,我们基于最近研究的双咪唑鎓二溴化物家族选择了三种DCILs,即DCIL - 1、DCIL - 3和DCIL - 5,其官能团分别为2 - 羟基丁基、2 - 羟基 - 3 -(甲基丙烯酰氧基)丙基和2 - 羟基 - 3 - 苯氧基丙基。当前的全原子分子动力学(MD)模拟和自由能计算与我们早期的实验分析结果一致,证实了它们对()的杀菌活性顺序为(DCIL - 5 > DCIL - 1 > DCIL - 3)。双阳离子插入是细菌双层膜破坏和破裂的主要驱动力。MD结果表明,体积较大的DCILs的抗菌活性归因于静电相互作用和疏水相互作用之间的相互作用。它进一步揭示了抗菌机制,包括双阳离子通过静电吸引吸附在细菌膜脂质上,双阳离子进行翻转运动以在脂质双层表面附近找到合适的取向,同时与脂质头基形成关键氢键以促进相邻疏水基团渗透到脂质双层中心。渗透过程会增加每个脂质的平均表面积,降低脂质尾部有序性和双层厚度,并提高脂质横向扩散和双层流动性,导致脂质双层破裂和细菌膜裂解。DCIL - 5表现出最强的抗菌活性,它具有2 - 羟基 - 3 - 苯氧基丙基官能团以及高相对疏水性和亲脂性,使其能够有效渗透细菌细胞壁。这项研究揭示了具有不同官能团的DCILs与革兰氏阴性细菌膜之间的微观相互作用,为筛选和合理设计新型阳离子高效抗菌材料提供了关键见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验