Zhou Yin, Cheng Yuan, Ye Jia, Li Zonglei, He Haijun, Pan Wei, Luo Bin, Yan Lianshan
Center for Information Photonics & Communications, School of Information Science & Technology, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
Department of Automation, Tsinghua University, Beijing, 100084, China.
Light Sci Appl. 2025 Jun 3;14(1):210. doi: 10.1038/s41377-025-01848-4.
Real-time wide-area environment sensing is crucial for accessing open-world information streams from nature and human society. As a transformative technique distinct from electrical sensors, distributed optical fiber sensing especially for Brillouin scattering-based paradigm has shown superior bandwidth, power, and sensing range. Still, it suffers from insufficient resolution and timeliness to characterize remote dynamic events. Here we develop TABS-a transient acoustic wave-based Brillouin optical time domain analysis sensor, supporting long-range high-spatiotemporal-resolution distributed sensing. By designing a functionally synergistic sensor architecture, TABS elaborately leverages wideband and time-weighted energy transformation properties of a transient acousto-optic interaction to breaking through Brillouin-energy-utilization-efficiency bottleneck, enabling enhancements in overall sensing performance. In the experiment, TABS has achieved a 37-cm spatial resolution over a 50-km range with 1 to 2 orders of magnitude improvement in temporal resolution compared to prevailing Brillouin sensing approaches. For the first time, TABS is explored for state imaging of evacuated-tube maglev transportation system as an exemplary application, showcasing its feasibility and flexibility for potential open-world applications and large-scale intelligent perception.
实时广域环境感知对于获取来自自然和人类社会的开放世界信息流至关重要。作为一种不同于电传感器的变革性技术,分布式光纤传感,尤其是基于布里渊散射的范式,已展现出卓越的带宽、功率和传感范围。然而,它在表征远程动态事件时仍存在分辨率和及时性不足的问题。在此,我们开发了TABS——一种基于瞬态声波的布里渊光时域分析传感器,支持远程高时空分辨率分布式传感。通过设计功能协同的传感器架构,TABS精心利用瞬态声光相互作用的宽带和时间加权能量转换特性,突破布里渊能量利用效率瓶颈,实现整体传感性能的提升。在实验中,TABS在50公里范围内实现了37厘米的空间分辨率,与主流布里渊传感方法相比,时间分辨率提高了1至2个数量级。首次将TABS用于真空管磁悬浮运输系统的状态成像作为典型应用,展示了其在潜在开放世界应用和大规模智能感知方面的可行性和灵活性。