Suppr超能文献

罗勒(C3)和玉米(C4)在不同光照条件下的植物光合作用,作为基于人工智能的PAM荧光/气体交换相关性模型的基础。

Plant photosynthesis in basil (C3) and maize (C4) under different light conditions as basis of an AI-based model for PAM fluorescence/gas-exchange correlation.

作者信息

Pappert Isabell, Klir Stefan, Jokic Luca, Ühlein Celine, Tran Quoc Khanh, Kaldenhoff Ralf

机构信息

Department of Applied Plant Sciences, Faculty of Biology, Technical University of Darmstadt, Darmstadt, Germany.

Laboratory of Adaptive Lighting Systems and Visual Processing, Technical University of Darmstadt, Darmstadt, Germany.

出版信息

Front Plant Sci. 2025 May 19;16:1590884. doi: 10.3389/fpls.2025.1590884. eCollection 2025.

Abstract

Photosynthetic activity can be monitored using pulse amplitude modulated (PAM) fluorescence or gas exchange. While PAM provides insight into the light-dependent reactions, gas exchange reflects CO fixation and water balance. Accurate, non-invasive prediction of photosynthetic performance under varying conditions is highly relevant for phenotyping and stress diagnostics. Despite their physiological link, data from both methods do not always correlate. To systematically investigate this relationship, photosynthetic parameters were measured in maize (, C4) and basil (, C3) under different photon densities and spectral compositions. Maize showed the highest CO assimilation rate of 30.99 ± 1.54 µmol CO/(m²s) under 2000 PAR green light (527 nm), while basil reached 10.56 ± 0.92 µmol CO/(m²s) under red light (630 nm). PAM-derived electron transport rates (ETR) increased with light intensity in a pattern similar to CO assimilation, but did not reliably reflect its absolute values under all conditions. To improve prediction accuracy, we applied a machine learning model. XGBoost, a gradient-boosted decision tree algorithm, efficiently captures nonlinear interactions between physiological and environmental parameters. It achieved superior performance (R² = 0.847; MSE = 5.24) compared to the Random Forest model. Our model enables accurate photosynthesis prediction from PAM data across light intensities and spectral conditions in both C3 and C4 plants.

摘要

光合活性可以使用脉冲幅度调制(PAM)荧光或气体交换来监测。虽然PAM能深入了解光依赖反应,但气体交换反映了二氧化碳固定和水分平衡。在不同条件下准确、无创地预测光合性能对于表型分析和胁迫诊断至关重要。尽管这两种方法存在生理联系,但来自这两种方法的数据并不总是相关的。为了系统地研究这种关系,在不同光子密度和光谱组成下,对玉米(C4)和罗勒(C3)的光合参数进行了测量。玉米在2000光合有效辐射(PAR)绿光(527纳米)下显示出最高的二氧化碳同化率,为30.99±1.54微摩尔二氧化碳/(平方米·秒),而罗勒在红光(630纳米)下达到10.56±0.92微摩尔二氧化碳/(平方米·秒)。源自PAM的电子传递速率(ETR)随着光强增加,其模式与二氧化碳同化相似,但在所有条件下都不能可靠地反映其绝对值。为了提高预测准确性,我们应用了一种机器学习模型。XGBoost是一种梯度提升决策树算法,能有效捕捉生理和环境参数之间非线性相互作用。与随机森林模型相比,它表现更优(R² = 0.847;均方误差 = 5.24)。我们的模型能够根据PAM数据,在不同光强和光谱条件下,对C3和C4植物的光合作用进行准确预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f78/12127398/8ff910c761e4/fpls-16-1590884-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验