Suppr超能文献

基于术前CT和MRI的退行性腰椎侧凸患者远端器械相关问题的机器学习模型的开发与验证

Development and validation of machine learning models for distal instrumentation-related problems in patients with degenerative lumbar scoliosis based on preoperative CT and MRI.

作者信息

Feng Zihe, Yang Honghao, Li Zhangfu, Zhang Xinuo, Hai Yong

机构信息

Beijing Chao-Yang Hospital, Beijing, China.

出版信息

Eur Spine J. 2025 Jun 3. doi: 10.1007/s00586-025-08906-w.

Abstract

BACKGROUND

This investigation proposes a machine learning framework leveraging preoperative MRI and CT imaging data to predict postoperative complications related to distal instrumentation (DIP) in degenerative lumbar scoliosis patients undergoing long-segment fusion procedures.

METHODS

We retrospectively analyzed 136 patients, categorizing based on the development of DIP. Preoperative MRI and CT scans provided muscle function and bone density data, including the relative gross cross-sectional area and relative functional cross-sectional area of the multifidus, erector spinae, paraspinal extensor, psoas major muscles, the gross muscle fat index and functional muscle fat index, Hounsfield unit values of the lumbosacral region and the lower instrumented vertebra. Predictive factors for DIP were selected through stepwise LASSO regression. The filtered and all factors were incorporated into six machine learning algorithms twice, namely k-nearest neighbors, decision tree, support vector machine, random forest, multilayer perceptron (MLP), and Naïve Bayes, with tenfold cross-validation.

RESULTS

Among patients, 16.9% developed DIP, with the multifidus' functional cross-sectional area and lumbosacral region's Hounsfield unit value as significant predictors. The MLP model exhibited superior performance when all predictive factors were input, with an average AUC of 0.98 and recall rate of 0.90.

CONCLUSION

We compared various machine learning algorithms and constructed, trained, and validated predictive models based on muscle function and bone density-related variables obtained from preoperative CT and MRI, which could identify patients with high risk of DIP after long-segment spinal fusion surgery.

摘要

背景

本研究提出了一种机器学习框架,利用术前MRI和CT成像数据来预测接受长节段融合手术的退变性腰椎侧凸患者与远端器械相关的术后并发症(DIP)。

方法

我们回顾性分析了136例患者,根据DIP的发生情况进行分类。术前MRI和CT扫描提供了肌肉功能和骨密度数据,包括多裂肌、竖脊肌、椎旁伸肌、腰大肌的相对总横截面积和相对功能横截面积、总肌肉脂肪指数和功能肌肉脂肪指数、腰骶部区域和最下位固定椎体的亨氏单位值。通过逐步LASSO回归选择DIP的预测因素。将筛选出的因素和所有因素分两次纳入六种机器学习算法,即k近邻、决策树、支持向量机、随机森林、多层感知器(MLP)和朴素贝叶斯,并进行十折交叉验证。

结果

在患者中,16.9%发生了DIP,多裂肌的功能横截面积和腰骶部区域的亨氏单位值是显著的预测因素。当输入所有预测因素时,MLP模型表现出卓越的性能,平均AUC为0.98,召回率为0.90。

结论

我们比较了各种机器学习算法,并基于术前CT和MRI获得的与肌肉功能和骨密度相关的变量构建、训练和验证了预测模型,该模型可以识别长节段脊柱融合手术后发生DIP的高风险患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验