Liu Yumin, Xing Kunming, Li Yuyan, Liu Kexin, Tan Guangyao, Zhang Shusheng, Shi Pengfei, Sun Yingnan
Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, P. R. China.
School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
ACS Appl Mater Interfaces. 2025 Jun 18;17(24):35328-35339. doi: 10.1021/acsami.5c09537. Epub 2025 Jun 3.
Biohybrid microrobots, based on swimming microalgae, offer outstanding self-propulsion and functionalization capabilities, making them promising platforms for cargo loading and delivery. However, current technologies predominantly focus on in vitro nanodrug transport, lacking an integrated strategy for the efficient capture and directional transport of large microscale cargo, particularly for biological targets. Here, we propose a dual-stage propulsion strategy for biohybrid microrobots, enabling the coupled capture and directional transport of large targets. Inspired by the multistage propulsion of rockets, the microrobots first utilize the autonomous motility of microalgae to establish a self-propulsion-driven primary phase. Surface functionalization creates a dynamic 3D biomimetic capture interface, enhancing the target capture efficiency. Subsequently, an external magnetic field activates a secondary propulsion mechanism, enabling precise directional transport. As a proof of concept, was employed as the biological carrier and noninvasively integrated with 2 μm magnetic beads to construct dual-actuated biohybrid microrobots. This design preserved the natural motility of the microalgae while providing abundant aptamers and strong magnetic actuation. Using 20 μm polystyrene microspheres and circulating tumor cells as model targets, we successfully demonstrated high-efficiency capture (up to 93%) and directional transport (14 μm/s) of large microscale targets, highlighting the potential of this strategy for biomedical, environmental, and analytical applications.
基于游动微藻的生物杂交微型机器人具有出色的自我推进和功能化能力,使其成为用于货物装载和递送的有前景的平台。然而,当前技术主要集中在体外纳米药物运输,缺乏针对大型微米级货物,特别是针对生物靶标的高效捕获和定向运输的综合策略。在此,我们提出了一种用于生物杂交微型机器人的双阶段推进策略,能够实现对大型靶标的耦合捕获和定向运输。受火箭多级推进的启发,微型机器人首先利用微藻的自主运动性建立自我推进驱动的初级阶段。表面功能化创建了一个动态的三维仿生捕获界面,提高了目标捕获效率。随后,外部磁场激活二级推进机制,实现精确的定向运输。作为概念验证,[此处原文缺失具体内容]被用作生物载体,并与2μm磁珠无创整合,构建了双驱动生物杂交微型机器人。这种设计保留了微藻的自然运动性,同时提供了丰富的适体和强大的磁驱动。使用20μm聚苯乙烯微球和循环肿瘤细胞作为模型靶标,我们成功展示了对大型微米级靶标的高效捕获(高达93%)和定向运输(14μm/s),突出了该策略在生物医学、环境和分析应用中的潜力。