Margaritakis Antonis, Qian Meirui, Johnson David H, Zeno Wade F, Ulmer Tobias S, Chung Peter J
Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.
Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
bioRxiv. 2025 May 13:2025.05.12.653516. doi: 10.1101/2025.05.12.653516.
Many cytosolic proteins critical to membrane trafficking and function contain an unstructured domain that can bind to specific membranes, with a transition into an amphipathic helix induced upon membrane association. These inducible amphipathic helices often play a critical role in organelle recognition and subsequent function by these cytosolic proteins, but the tools and techniques used to characterize affinity towards specific membranes are low-throughput and highly dependent on the solubility of the inducible amphipathic helix. Here, we introduce a modular recombinant protein platform for rapidly measuring the binding affinity of inducible amphipathic helices towards a variety of membrane compositions and curvatures using high-throughput fluorescence anisotropy measurements. Inducible amphipathic helices are solubilized with a fluorescently tagged small ubiquitin-like modifier (SUMO) protein and binding to membranes quantified by leveraging the unexpected decrease in fluorescence anisotropy upon binding, a phenomenon previously observed but not well understood. By using fluorescence anisotropy decay measurements and solution NMR experiments, we deduce that this phenomenon likely occurs due to the local increase in fluorophore motion upon binding to the membrane. Altogether, this recombinant protein platform can be readily applied to any inducible amphipathic helix of interest, allowing for detailed investigation of the specific membrane biochemical parameters facilitating binding.
许多对膜运输和功能至关重要的胞质蛋白都含有一个无结构域,该结构域可与特定膜结合,并在与膜结合时转变为两亲性螺旋。这些可诱导的两亲性螺旋通常在这些胞质蛋白对细胞器的识别及后续功能中发挥关键作用,但用于表征对特定膜亲和力的工具和技术通量较低,且高度依赖于可诱导两亲性螺旋的溶解性。在此,我们引入了一个模块化重组蛋白平台,用于使用高通量荧光各向异性测量快速测定可诱导两亲性螺旋对多种膜组成和曲率的结合亲和力。可诱导两亲性螺旋与荧光标记的小泛素样修饰物(SUMO)蛋白一起溶解,并通过利用结合时荧光各向异性意外降低这一现象来量化与膜的结合,这一现象此前已被观察到,但尚未得到很好的理解。通过使用荧光各向异性衰减测量和溶液核磁共振实验,我们推断这种现象可能是由于荧光团与膜结合时运动局部增加所致。总之,这个重组蛋白平台可以很容易地应用于任何感兴趣的可诱导两亲性螺旋,从而能够详细研究促进结合的特定膜生化参数。