文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

超高剂量率和氧浓度对芬顿反应影响的蒙特卡洛径迹结构模拟

Monte Carlo track-structure simulation of the impact of Ultra-Hight Dose Rate and oxygen concentration on the Fenton reaction.

作者信息

Chaoui M, Tayalati Y, Bouhali O, Ramos-Méndez J

机构信息

Faculty of Sciences, University Mohammed V in Rabat, Morocco.

School of applied and Engineering physics, Mohammed VI Polytechnic University, Ben Guerir, Morocco.

出版信息

bioRxiv. 2025 May 15:2025.05.13.652705. doi: 10.1101/2025.05.13.652705.


DOI:10.1101/2025.05.13.652705
PMID:40463020
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12132385/
Abstract

BACKGROUND: Preclinical investigations studies have shown that FLASH radiotherapy (FLASH-RT), delivering radiation in ultra-high dose rates (UHDR), preserves healthy tissue and reduces toxicity, all while maintaining an effective tumor response compared to conventional radiotherapy (CONV-RT), the combined biological benefit was termed as "FLASH effect". However, the mechanisms responsible for this effect remain unclear. Research demonstrated that oxygen concentration contributes to the FLASH effect, and it has been hypothesized that Fenton reaction might play a role in the "FLASH effect". PURPOSE: We propose to investigate the effect of ultra-high dose rate (UHDR), compared to conventional dose rates (CONV), on the Fenton reaction by studying the radiolysis of Fricke solution. The study will focus on how dose, dose rate, and initial oxygen concentration influence the activation of the Fenton reaction. METHODS AND MATERIALS: TOPAS-nBio version 2.0 was used to simulate the radiolysis of the Fricke system. A cubic water phantom of 3μm side was irradiated by 300MeV protons on one of its edges. For UHDR, a proton field (1.5×1.5μm) was delivered in a single pulse of 1ns width. The protons were accumulated until reached 5Gy or 10Gy absorbed dose. For CONV, the independent history approach was used to mimic Co irradiation. For both dose-rates, oxygen concentrations representative of hypoxic and normoxic tissues (10-250μM) were simulated. The G-value for oxidant ions G(Fe3+) and ΔG-value of Fenton reaction (HO + Fe→ Fe+OH+OH) were scored. The simulations ended after G(Fe) achieved steady-state, and calculated yields were compared with published data. RESULTS: For CONV, G(Fe) agreed with ICRU-report 34 data by (0.97±0.1) %. For UHDR, G(Fe) agreed with ICRU data by (1.24±0.1)% and (0.92±0.1)% for 5Gy and 10Gy, respectively. Notably, UHDR at 10 Gy reduced the occurrence of Fenton reactions by (1.0±0.1)% and (11.5±0.1)% at initial oxygen concentrations of 250 μM and 10 μM, respectively. In consequence, UHDR decreased G(Fe3+) by (1.8±0.1)% and (12.5±0.1)% at these oxygen levels. Additionally, increasing the absorbed dose to 15 Gy and 20 Gy at low oxygen (10 μM), UHDR further reduced the ΔG-value by (15.7±0.1)% and (18.6±0.1)%, respectively. The decrease was driven by intertrack effects present in UHDR pulses and its impact on the scavenging effect that oxygen had over hydrogen radicals. CONCLUSIONS: UHDR reduces the yield of Fe (G(Fe)) and significantly impacts Fenton reactions, particularly at low oxygen concentrations, while showing minimal effects at higher oxygen levels. This effect becomes more pronounced at higher dose thresholds, such as 10-20 Gy. This emphasizes the important role of the initial oxygen concentration in UHDR and its influence on the Fenton reaction, a mechanism that may contribute to elucidate the FLASH effect.

摘要

背景:临床前研究表明,以超高剂量率(UHDR)进行的FLASH放疗可保护健康组织并降低毒性,同时与传统放疗(CONV-RT)相比保持有效的肿瘤反应,这种综合生物学益处被称为“FLASH效应”。然而,导致这种效应的机制仍不清楚。研究表明,氧浓度有助于产生FLASH效应,并且有人推测芬顿反应可能在“FLASH效应”中起作用。 目的:我们建议通过研究弗里克溶液的辐射分解来研究超高剂量率(UHDR)与传统剂量率(CONV)相比对芬顿反应的影响。该研究将集中于剂量、剂量率和初始氧浓度如何影响芬顿反应的激活。 方法和材料:使用TOPAS-nBio 2.0版模拟弗里克系统的辐射分解。一个边长为3μm的立方体水体模在其一条边上受到300MeV质子的照射。对于UHDR,一个质子场(1.5×1.5μm)以1ns宽度的单个脉冲形式输送。质子累积直至达到5Gy或10Gy的吸收剂量。对于CONV,使用独立历史方法模拟钴照射。对于两种剂量率,模拟了代表缺氧和正常氧合组织的氧浓度(10-250μM)。对氧化离子的G值G(Fe3+)和芬顿反应的ΔG值(HO + Fe→Fe+OH+OH)进行评分。模拟在G(Fe)达到稳态后结束,并将计算出的产率与已发表的数据进行比较。 结果:对于CONV,G(Fe)与ICRU报告34数据的吻合度为(0.97±0.1)%。对于UHDR,5Gy和10Gy时G(Fe)与ICRU数据的吻合度分别为(1.24±0.1)%和(0.92±0.1)%。值得注意的是,在10Gy的UHDR下,初始氧浓度为250μM和10μM时,芬顿反应的发生率分别降低了(1.0±0.1)%和(11.5±0.1)%。因此,在这些氧水平下,UHDR使G(Fe3+)分别降低了(1.8±0.1)%和(12.5±0.1)%。此外,在低氧(10μM)条件下将吸收剂量增加到15Gy和20Gy时,UHDR使ΔG值分别进一步降低了(15.7±0.1)%和(18.6±0.1)%。这种降低是由UHDR脉冲中存在的径迹间效应及其对氧对氢自由基的清除作用的影响所驱动的。 结论:UHDR降低了Fe的产率(G(Fe))并显著影响芬顿反应,特别是在低氧浓度下,而在高氧水平下影响最小。这种效应在较高剂量阈值(如10-20Gy)时变得更加明显。这强调了初始氧浓度在UHDR中的重要作用及其对芬顿反应的影响,这一机制可能有助于阐明FLASH效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/0aa930cb0b35/nihpp-2025.05.13.652705v1-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/1a204298e76f/nihpp-2025.05.13.652705v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/44e2ccba23ad/nihpp-2025.05.13.652705v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/2ecd48d277a9/nihpp-2025.05.13.652705v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/2edb1d9ae9ff/nihpp-2025.05.13.652705v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/72f30d5555f1/nihpp-2025.05.13.652705v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/d0ae59e181f7/nihpp-2025.05.13.652705v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/5092890123de/nihpp-2025.05.13.652705v1-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/0aa930cb0b35/nihpp-2025.05.13.652705v1-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/1a204298e76f/nihpp-2025.05.13.652705v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/44e2ccba23ad/nihpp-2025.05.13.652705v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/2ecd48d277a9/nihpp-2025.05.13.652705v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/2edb1d9ae9ff/nihpp-2025.05.13.652705v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/72f30d5555f1/nihpp-2025.05.13.652705v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/d0ae59e181f7/nihpp-2025.05.13.652705v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/5092890123de/nihpp-2025.05.13.652705v1-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b9/12132385/0aa930cb0b35/nihpp-2025.05.13.652705v1-f0008.jpg

相似文献

[1]
Monte Carlo track-structure simulation of the impact of Ultra-Hight Dose Rate and oxygen concentration on the Fenton reaction.

bioRxiv. 2025-5-15

[2]
Analysis of hydrogen peroxide production in pure water: Ultrahigh versus conventional dose-rate irradiation and mechanistic insights.

Med Phys. 2024-10

[3]
LET-Dependent Intertrack Yields in Proton Irradiation at Ultra-High Dose Rates Relevant for FLASH Therapy.

Radiat Res. 2020-10-2

[4]
Radiation Chemical Yields of 7-Hydroxy-Coumarin-3-Carboxylic Acid for Proton- and Carbon-Ion Beams at Ultra-High Dose Rates: Potential Roles in FLASH Effects.

Radiat Res. 2022-9-1

[5]
Monte Carlo simulations of microdosimetry and radiolytic species production at long time post proton irradiation using GATE and Geant4-DNA.

Med Phys. 2024-10

[6]
A simulation study of ionizing radiation acoustic imaging (iRAI) as a real-time dosimetric technique for ultra-high dose rate radiotherapy (UHDR-RT).

Med Phys. 2021-10

[7]
Investigating radical yield variations in FLASH and conventional proton irradiation via microscopic Monte Carlo simulations.

Phys Med Biol. 2025-5-12

[8]
Effect of Ultrahigh Dose Rate on Biomolecular Radiation Damage.

Radiat Res. 2024-12-1

[9]
Effect of FLASH dose-rate and oxygen concentration in the production of HOin cellular-like media versus water: a Monte Carlo track-structure study.

Phys Med Biol. 2025-1-17

[10]
Dosimetric calibration of anatomy-specific ultra-high dose rate electron irradiation platform for preclinical FLASH radiobiology experiments.

Med Phys. 2024-12

本文引用的文献

[1]
Exploring the Metabolic Impact of FLASH Radiotherapy.

Cancers (Basel). 2025-1-3

[2]
Effect of FLASH dose-rate and oxygen concentration in the production of HOin cellular-like media versus water: a Monte Carlo track-structure study.

Phys Med Biol. 2025-1-17

[3]
Investigation of hydrogen peroxide yields and oxygen consumption in high dose rate irradiation: a TOPAS-nBio Monte Carlo study.

Phys Med Biol. 2024-12-24

[4]
Reinventing Radiobiology in the Light of FLASH Radiotherapy.

Annu Rev Cancer Biol. 2023-4

[5]
Hypoxia induces ROS-resistant memory upon reoxygenation in vivo promoting metastasis in part via MUC1-C.

Nat Commun. 2024-9-28

[6]
In vivo measurements of change in tissue oxygen level during irradiation reveal novel dose rate dependence.

Radiother Oncol. 2024-12

[7]
FLASH radiotherapy for the treatment of symptomatic bone metastases in the thorax (FAST-02): protocol for a prospective study of a novel radiotherapy approach.

Radiat Oncol. 2024-3-12

[8]
Accumulation Patterns of Metabolites Responsible for the Functional Quality of Virgin Olive Oil during Olive Fruit Ontogeny.

Antioxidants (Basel). 2023-12-20

[9]
Direct Measurements of FLASH-Induced Changes in Intracellular Oxygenation.

Int J Radiat Oncol Biol Phys. 2024-3-1

[10]
Proton and Electron Ultrahigh-Dose-Rate Isodose Irradiations Produce Differences in Reactive Oxygen Species Yields.

Int J Radiat Oncol Biol Phys. 2024-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索