Iannone Stacy, Kaur Amarpreet, Johnson Kevin B
medRxiv. 2025 May 13:2025.05.12.25327223. doi: 10.1101/2025.05.12.25327223.
Artificial intelligence (AI) has the potential to revolutionize clinical decision-making and significantly improve patient outcomes in outpatient primary care. AI technologies, including machine learning, deep learning, and transformers, enhance diagnostic accuracy, risk prediction, personalized treatment, workflow efficiency, clinical documentation, and continuous patient monitoring. However, despite rapid advancements, the extent of AI implementation in outpatient primary care remains unclear. This scoping review explores how AI functions, undergoes trials or integrates into non-urgent outpatient primary care settings.
This scoping review follows PRISMA Extension for Scoping Reviews (ScR) guidelines. We searched five databases, including published and gray literature, to identify studies published between January 1, 2019, and November 22, 2024, using AI and primary care-related terms. We used Covidence, a web-based systematic review tool, to screen titles, abstracts, and full texts of English-language manuscripts. We then extracted data and categorized studies by research phase and AI application in primary care.
We screened 3,203 manuscripts and found 61 met the eligibility criteria. Most studies (26) focused on model development, while only eight reported clinical trial results. AI applications included provider support (5) and radiological disease diagnosis (1). Most studies examined clinical decision-making, disease diagnosis, and risk prediction, but none addressed provider cognitive support, workflow automation, or risk-adjusted paneling. Despite AI's potential, real-world implementation remains limited.
AI in primary care remains in the developmental stage, with minimal real-world use beyond ambient scribing, clinical decision support, and workflow automation. Researchers must collaborate with professional societies and industry partners to accelerate adoption, expand clinical trials, enhance AI education for providers and patients, facilitate model deployment, and conduct periodic assessments of real-world AI adoption trends to guide future integration.
人工智能(AI)有潜力彻底改变临床决策,并显著改善门诊初级保健中的患者治疗效果。包括机器学习、深度学习和变压器模型在内的人工智能技术可提高诊断准确性、风险预测能力、个性化治疗水平、工作流程效率、临床文档记录以及持续的患者监测。然而,尽管取得了快速进展,但人工智能在门诊初级保健中的实施程度仍不明确。本范围综述探讨了人工智能如何发挥作用、进行试验或融入非紧急门诊初级保健环境。
本范围综述遵循《系统综述与Meta分析扩展版范围综述(ScR)指南》。我们检索了五个数据库,包括已发表文献和灰色文献,以识别2019年1月1日至2024年11月22日期间发表的使用人工智能和初级保健相关术语的研究。我们使用基于网络的系统综述工具Covidence筛选英文手稿的标题、摘要和全文。然后,我们提取数据,并根据研究阶段和人工智能在初级保健中的应用对研究进行分类。
我们筛选了3203篇手稿,发现61篇符合纳入标准。大多数研究(26项)聚焦于模型开发,而只有8项报告了临床试验结果。人工智能应用包括为医疗服务提供者提供支持(5项)和放射疾病诊断(1项)。大多数研究考察了临床决策、疾病诊断和风险预测,但没有一项涉及对医疗服务提供者的认知支持、工作流程自动化或风险调整分组。尽管人工智能具有潜力,但实际应用仍然有限。
初级保健中的人工智能仍处于发展阶段,除了环境抄写、临床决策支持和工作流程自动化之外,实际应用极少。研究人员必须与专业协会和行业合作伙伴合作,以加速采用、扩大临床试验、加强对医疗服务提供者和患者的人工智能教育、促进模型部署,并定期评估人工智能在现实世界中的采用趋势,以指导未来的整合。