Suppr超能文献

揭示用于白血病药物设计的豚鼠I型天冬酰胺酶的催化机制和构象动力学。

Unveiling the Catalytic Mechanism and Conformational Dynamics of Guinea Pig l‑Asparaginase Type 1 for Leukemia Drug Design.

作者信息

Andjelkovic Milorad, Zinovjev Kirill, Ruiz-Pernía Jose Javier, Tuñón Iñaki

机构信息

Departamento de Química Física, Universidad de Valencia, 46100 Burjassot, Spain.

Instituto de Materiales Avanzados, Universidad Jaume I, 12071 Castelló, Spain.

出版信息

ACS Catal. 2025 Apr 29;15(10):7919-7933. doi: 10.1021/acscatal.4c07791. eCollection 2025 May 16.

Abstract

In this study, we present a computational analysis of the catalytic properties of guinea pig asparaginase type 1 (or gpASNase1), an enzyme of mammalian origin that offers a potential alternative for the treatment of acute lymphoblastic leukemia. This enzyme transforms asparagine into aspartate, depriving leukemia cells of this essential amino acid. A combination of molecular dynamics simulations, free energy calculations, and mechanistic insights based on quantum mechanics/molecular mechanics hybrid approaches was used to identify those residues contributing to the catalytic cycle of the enzyme. We dissected the contribution of enzymatic residues to substrate binding and selectivity, showing why this ASNase can degrade asparagine but not glutamine. We also studied the conformational dynamics of the enzymatic loop closing the active site, demonstrating that the substrate binding favors the closed state. The catalytic reaction mechanisms, composed of two stages, acylation and hydrolysis, were explored as well. The rate-limiting step presents a free energy barrier close to the experimental estimation and corresponds to the nucleophilic attack of enzymatic Thr19 on the carbonyl carbon atom of the substrate. Analysis of the electric field created by the protein sheds light on the role of certain residues and structural motifs in stabilizing the reaction transition state. The conclusions of this analysis are useful for rationalizing the properties of chimeras derived from gpASNase1 and predicting additional residue positions, where mutations could enhance substrate binding and loop dynamics. The results of this study enhance the understanding of gpASNase1, offering valuable insights into rational mutations and enzyme engineering for the treatment of leukemia.

摘要

在本研究中,我们对豚鼠1型天冬酰胺酶(或gpASNase1)的催化特性进行了计算分析,该酶源自哺乳动物,为急性淋巴细胞白血病的治疗提供了一种潜在的替代方案。这种酶将天冬酰胺转化为天冬氨酸,使白血病细胞缺乏这种必需氨基酸。我们结合分子动力学模拟、自由能计算以及基于量子力学/分子力学混合方法的机理见解,来确定对该酶催化循环有贡献的那些残基。我们剖析了酶残基对底物结合和选择性的贡献,揭示了这种天冬酰胺酶为何能降解天冬酰胺而不能降解谷氨酰胺。我们还研究了封闭活性位点的酶促环的构象动力学,证明底物结合有利于封闭状态。我们还探索了由酰化和水解两个阶段组成的催化反应机制。限速步骤呈现出一个接近实验估计值的自由能垒,对应于酶促苏氨酸19对底物羰基碳原子的亲核攻击。对蛋白质产生的电场的分析揭示了某些残基和结构基序在稳定反应过渡态中的作用。该分析的结论有助于阐明源自gpASNase1的嵌合体的特性,并预测其他残基位置,在这些位置进行突变可增强底物结合和环动力学。本研究结果增进了对gpASNase1的理解,为白血病治疗中的合理突变和酶工程提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6635/12128190/9e72b35e6672/cs4c07791_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验