Park Se Hwan, Juarez-Yescas Carlos, Naik Kaustubh G, Wang Yingjin, Luo Yuting, Puthusseri Dhanya, Kwon Patrick, Vishnugopi Bairav S, Shyam Badri, Yang Heng, Cook John, Okasinski John, Chuang Andrew C, Xiao Xianghui, Greer Julia R, Mukherjee Partha P, Zahiri Beniamin, Braun Paul V, Hatzell Kelsey B
Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08540, United States.
Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
ACS Nano. 2025 Jun 17;19(23):21878-21890. doi: 10.1021/acsnano.5c06799. Epub 2025 Jun 4.
Structural heterogeneity in solid-state batteries can impact the material utilization and fracture mechanisms. Crystallographically oriented LiCoO film cathodes serve as a model electrode system for exploring how void distribution contributes to stress relief and buildup during cycling. Real- and reciprocal-space and synchrotron-based experiments are utilized to understand structural changes across multiple length scales that contribute to stress generation and fracture. Nanotomography uncovers a depth-dependent porosity variation in the pristine electrode and highlights the preferential fracture in regions of lower porosity during delithiation. Energy-dispersive X-ray diffraction and three-dimensional (3D) X-ray absorption near-edge spectroscopy (XANES) reveal the underutilization of cathode material in these regions. 3D XANES also confirms preferential delithiation near the subgrain boundaries. Chemo-mechanical modeling coupled with site-specific mechanical characterization demonstrates how stress accumulation in dense regions of the electrode leads to fracture and underutilization of active material. Our findings reveal the importance of material design to alleviate stress in small-volume changing cathodes.
固态电池中的结构异质性会影响材料利用率和断裂机制。晶体取向的LiCoO薄膜阴极作为一个模型电极系统,用于探索孔隙分布如何在循环过程中促进应力释放和积累。利用实空间和倒易空间以及基于同步加速器的实验来了解跨多个长度尺度的结构变化,这些变化会导致应力产生和断裂。纳米断层扫描揭示了原始电极中随深度变化的孔隙率变化,并突出了脱锂过程中低孔隙率区域的优先断裂。能量色散X射线衍射和三维(3D)X射线吸收近边光谱(XANES)揭示了这些区域中阴极材料的未充分利用。3D XANES还证实了亚晶界附近的优先脱锂。化学-力学建模与特定位置的力学表征相结合,展示了电极致密区域中的应力积累如何导致活性材料的断裂和未充分利用。我们的研究结果揭示了材料设计对于缓解小体积变化阴极中的应力的重要性。