Li Haimei, Wang Yuying, Liu Yi, Jiang Peng
Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, China.
School of Chemistry and Materials Sciences, South-Central Minzu University, Wuhan 430074, China.
J Colloid Interface Sci. 2025 Nov 15;698:138044. doi: 10.1016/j.jcis.2025.138044. Epub 2025 Jun 2.
Pyroptosis and cuproptosis are promising strategies in cancer therapy. However, strategies to induce cell pyroptosis and cuproptosis are limited by the tumor microenvironment (TME). In this study, a multifunctional copper-based composite nanomaterial (CCS-ICG) was developed to enhance antitumor efficacy through a synergistic combination of chemodynamic therapy (CDT), photodynamic therapy (PDT), and photothermal therapy (PTT), alongside ion interference. This nanomaterial integrates endogenous and exogenous stimulation mechanisms to promote reactive oxygen species (ROS) production. Upon entering tumor cells, CCS-ICG decomposes to release HO and O, effectively modulating the tumor microenvironment (TME) by elevating HO levels and alleviating hypoxia. Elevated HO enhances the Fenton-like activity of Cu, generating toxic OH and boosting CDT, while O production improves PDT by promoting O generation. Additionally, intracellular accumulation of Cu induces cuproptosis, enhancing ROS generation and accumulation, while Ca release triggers calcium overload, amplifying oxidative stress. These mechanisms facilitate significant ROS generation, leading to pyroptosis, immunogenic cell death (ICD), and T cell infiltration, which collectively contribute to a potent antitumor immune response. In vivo and in vitro evaluations reveal that CCS-ICG effectively modulates the TME, exhibits superior antitumor activity, and displays favorable biocompatibility, highlighting its potential as a multimodal platform for synergistic cancer therapy.
细胞焦亡和铜死亡是癌症治疗中很有前景的策略。然而,诱导细胞焦亡和铜死亡的策略受到肿瘤微环境(TME)的限制。在本研究中,开发了一种多功能铜基复合纳米材料(CCS-ICG),通过化学动力疗法(CDT)、光动力疗法(PDT)和光热疗法(PTT)的协同组合以及离子干扰来增强抗肿瘤疗效。这种纳米材料整合了内源性和外源性刺激机制以促进活性氧(ROS)的产生。进入肿瘤细胞后,CCS-ICG分解以释放HO和O,通过提高HO水平和缓解缺氧有效地调节肿瘤微环境(TME)。升高的HO增强了Cu的类Fenton活性,产生有毒的OH并增强CDT,而O的产生通过促进O的生成改善了PDT。此外,Cu的细胞内积累诱导铜死亡,增强ROS的产生和积累,而Ca释放触发钙超载,放大氧化应激。这些机制促进大量ROS的产生,导致细胞焦亡、免疫原性细胞死亡(ICD)和T细胞浸润,共同促成强大的抗肿瘤免疫反应。体内和体外评估表明,CCS-ICG有效地调节TME,表现出卓越的抗肿瘤活性,并显示出良好的生物相容性,突出了其作为协同癌症治疗多模态平台的潜力。
J Colloid Interface Sci. 2025-11-15
Int J Nanomedicine. 2025-7-3
ACS Appl Mater Interfaces. 2022-2-2
J Colloid Interface Sci. 2025-7-15
J Colloid Interface Sci. 2025-11-15
Angew Chem Int Ed Engl. 2020-11-16