Suppr超能文献

用于快速探索序列空间的单分子平行分析

Single-molecule parallel analysis for rapid exploration of sequence space.

作者信息

Bastiaanssen Carolien, Severins Ivo, van Noort John, Joo Chirlmin

机构信息

Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, the Netherlands.

Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, Leiden, the Netherlands.

出版信息

Nat Protoc. 2025 Jun 4. doi: 10.1038/s41596-025-01196-y.

Abstract

Single-molecule fluorescence techniques have been successfully applied to uncover the structure, dynamics and interactions of DNA, RNA and proteins at the molecular scale. While the structure and function of these biomolecules are imposed by their sequences, single-molecule studies have been limited to a small number of sequences due to constraints in time and cost. To gain a comprehensive understanding on how sequence influences these essential biomolecules and the processes in which they act, a vast number of sequences have to be probed, requiring a high-throughput parallel approach. To address this need, we developed SPARXS: single-molecule parallel analysis for rapid exploration of sequence space. This platform enables simultaneous profiling of millions of molecules, covering thousands of distinct sequences, at the single-molecule level by coupling single-molecule fluorescence microscopy with next-generation high-throughput sequencing. Here we describe how to implement SPARXS and give examples from our study into the effect of sequence on Holliday junction kinetics. We provide a detailed description of sample and library design, single-molecule measurement, sequencing, coupling of sequencing and single-molecule fluorescence data, and data analysis. The protocol requires experience with single-molecule fluorescence microscopy and a basic command of Python to use our Papylio package for SPARXS data analysis. Familiarity with the underlying principles of Illumina sequencing is also beneficial. The entire process takes ~1-2 weeks and provides a detailed quantitative picture of the effect of sequence on the studied process.

摘要

单分子荧光技术已成功应用于在分子尺度上揭示DNA、RNA和蛋白质的结构、动力学及相互作用。虽然这些生物分子的结构和功能由其序列决定,但由于时间和成本的限制,单分子研究仅限于少数序列。为了全面了解序列如何影响这些重要生物分子及其发挥作用的过程,必须探测大量序列,这需要一种高通量并行方法。为满足这一需求,我们开发了SPARXS:用于快速探索序列空间的单分子并行分析。该平台通过将单分子荧光显微镜与下一代高通量测序相结合,能够在单分子水平上同时对数百万个分子进行分析,涵盖数千个不同序列。在此,我们描述如何实施SPARXS,并给出我们关于序列对霍利迪连接体动力学影响研究的示例。我们提供了样本和文库设计、单分子测量、测序、测序与单分子荧光数据的耦合以及数据分析的详细描述。该方案需要有单分子荧光显微镜的经验以及使用我们用于SPARXS数据分析的Papylio软件包的基本Python命令知识。熟悉Illumina测序的基本原理也会有所帮助。整个过程大约需要1 - 2周,并提供了序列对所研究过程影响的详细定量描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验