Xia Yongming, Tao Liang, Shang Wenzhong, Zhang Guibin, Lu Ying
Department of Hematology and Oncology, Yuyao People's Hospital of Zhejiang Provice, Ningbo 315400, China.
Department of General Surgery, Center Hospital of Haining, Jiaxing 314408, China.
J Mater Chem B. 2025 Jul 2;13(26):7609-7636. doi: 10.1039/d5tb00528k.
Lymphomas constitute a molecularly and clinically heterogeneous group of hematological malignancies, classically classified into two distinct types: Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL). These subtypes demonstrate fundamental divergences in their pathobiology and immune microenvironmental profiles. Nanovaccines-nanoparticle-based platforms encapsulating tumor-associated antigens (TAAs) or neoantigens-offer precision immunotherapy by enabling controlled antigen delivery and enhanced dendritic cell cross-presentation. Subtype-specific designs target EBV-associated HL (using LMP1/2 or EBNA1) or NHL ( CD19/CD20/CD22 or T-cell epitopes). However, challenges persist in the development of nanovaccines, particularly concerning antigen selection, carrier materials, and the optimization of vaccine formulations. These vaccines must overcome the immunosuppressive tumor microenvironment, ensure efficient delivery to tumor sites, and avoid toxicity. Despite these hurdles, evolving research in the immunotherapy field of lymphoma leads to the continued exploration of nanovaccines as promising additions to existing therapeutic regimens. This review serves to highlight the critical nature of further research to achieve a better understanding of the complicated interdependent interactions between nanovaccines, immune responses and tumor biology, culminating in more effective and personalised therapies for victims of lymphomas. This advanced strategy is expected to overcome the shortcomings of classic therapies including chemo and radiotherapy, in terms of improved specificity, fewer systemic side-effects and the potential for prolonged remission in patients with refractory or relapsed lymphomas. In conclusion, the integration of nanotechnology into lymphoma immunotherapy marks a vast advancement in the field of cancer therapy, with nanovaccines poised to play a crucial role in future therapeutic strategies.
淋巴瘤是一组在分子和临床上具有异质性的血液系统恶性肿瘤,传统上分为两种不同类型:霍奇金淋巴瘤(HL)和非霍奇金淋巴瘤(NHL)。这些亚型在其病理生物学和免疫微环境特征方面表现出根本差异。纳米疫苗——基于纳米颗粒的平台,包裹肿瘤相关抗原(TAAs)或新抗原——通过实现可控的抗原递送和增强树突状细胞交叉呈递,提供精准免疫疗法。亚型特异性设计针对EBV相关的HL(使用LMP1/2或EBNA1)或NHL(CD19/CD20/CD22或T细胞表位)。然而,纳米疫苗的开发仍然存在挑战,特别是在抗原选择、载体材料和疫苗配方优化方面。这些疫苗必须克服免疫抑制性肿瘤微环境,确保有效递送至肿瘤部位,并避免毒性。尽管存在这些障碍,但淋巴瘤免疫治疗领域不断发展的研究促使人们继续探索纳米疫苗,将其作为现有治疗方案中有前景的补充。本综述旨在强调进一步研究的关键性质,以更好地理解纳米疫苗、免疫反应和肿瘤生物学之间复杂的相互依存关系,最终为淋巴瘤患者提供更有效和个性化的治疗。这种先进策略有望克服传统疗法(包括化疗和放疗)的缺点,在提高特异性、减少全身副作用以及为难治性或复发性淋巴瘤患者延长缓解期方面具有潜力。总之,将纳米技术整合到淋巴瘤免疫治疗中标志着癌症治疗领域的巨大进步,纳米疫苗有望在未来治疗策略中发挥关键作用。
J Mater Chem B. 2025-7-2
Cochrane Database Syst Rev. 2018-2-6
Cochrane Database Syst Rev. 2018-7-12
Arch Ital Urol Androl. 2025-6-30