Suppr超能文献

丝裂原活化蛋白激酶8和组蛋白去乙酰化酶6:基于生物信息学分析的糖尿病视网膜病变中与自噬相关的潜在生物标志物

MAPK8 and HDAC6: potential biomarkers related to autophagy in diabetic retinopathy based on bioinformatics analysis.

作者信息

Sun Ruotong, Zuo Ling

机构信息

Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, China.

出版信息

Front Endocrinol (Lausanne). 2025 May 21;16:1487007. doi: 10.3389/fendo.2025.1487007. eCollection 2025.

Abstract

INTRODUCTION

One of the most common vascular diseases of the retina is diabetic retinopathy (DR), a microvascular condition caused by diabetes. The autophagy system transports and degrades cytoplasmic substances to lysosomes as part of the intracellular degradation process. Autophagy appears to be an important regulator in the development and progression of DR, but its mechanism and potential role are unclear. The purpose of this study is to identify autophagy-related genes in DR and find potential biomarkers associated with DR through bioinformatics analysis.

METHOD

We retrieved the dataset GSE102485 from the Gene Expression Omnibus (GEO) database and compiled a list of 344 autophagy-related genes. Using the R software, bioinformatics analysis was used to identify the differentially expressed autophagy-related genes (ARGs). Then, we identified the autophagy-related hub genes (ARHGs) through a series of analyses including Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, correlation analysis, and protein-protein interaction (PPI) network. In addition, the miRNA-gene-TF interaction network was generated using the NetworkAnalyst platform. Potential therapeutic drugs were predicted utilizing the Drug-Gene Interaction Database (DGIdb). Ultimately, DR was simulated through the high glucose incubation of the retinal pigment epithelium cell line (ARPE-19), and employing quantitative real-time polymerase chain reaction (qRT-PCR) to verify ARHG expression. The effectiveness of ARHGs in diagnosing DR was assessed by measuring the area under the receiver operating characteristic (ROC) curve.

RESULTS

Differential expression analysis identified 26 ARGs, of which 6 were upregulated and 20 were downregulated. Through GO and KEGG enrichment analysis, it was found that ARGs showed significant enrichment in autophagy-related pathways. Using PPI network analysis, 7 ARHGs were identified. The expression of MAPK8, HDAC6, DNAJB1 and TARDBP, in a model of DR were confirmed by qRT-PCR. The ROC curve results showed that MAPK8, HDAC6, DNAJB1 and TSC2 had high predictive accuracy and could be used as biomarkers for DR.

CONCLUSION

Through bioinformatics analysis, we identified 26 genes that may be associated with autophagy in DR. We suggest that the hub genes MAPK8 and HDAC6 as biomarkers may be involved in autophagy in DR.

摘要

引言

糖尿病视网膜病变(DR)是最常见的视网膜血管疾病之一,是一种由糖尿病引起的微血管病变。自噬系统作为细胞内降解过程的一部分,将细胞质物质运输并降解至溶酶体。自噬似乎是DR发生发展的重要调节因子,但其机制和潜在作用尚不清楚。本研究旨在通过生物信息学分析,鉴定DR中与自噬相关的基因,并寻找与DR相关的潜在生物标志物。

方法

我们从基因表达综合数据库(GEO)中检索数据集GSE102485,并编制了一份包含344个自噬相关基因的列表。使用R软件,通过生物信息学分析来鉴定差异表达的自噬相关基因(ARG)。然后,我们通过一系列分析,包括基因本体论(GO)富集分析、京都基因与基因组百科全书(KEGG)通路分析、相关性分析和蛋白质-蛋白质相互作用(PPI)网络,来鉴定自噬相关枢纽基因(ARHG)。此外,使用NetworkAnalyst平台生成miRNA-基因-转录因子相互作用网络。利用药物-基因相互作用数据库(DGIdb)预测潜在的治疗药物。最终,通过视网膜色素上皮细胞系(ARPE-19)的高糖孵育模拟DR,并采用定量实时聚合酶链反应(qRT-PCR)验证ARHG的表达。通过测量受试者工作特征(ROC)曲线下面积,评估ARHG在诊断DR中的有效性。

结果

差异表达分析鉴定出26个ARG,其中6个上调,20个下调。通过GO和KEGG富集分析发现,ARG在自噬相关通路中显著富集。使用PPI网络分析,鉴定出7个ARHG。通过qRT-PCR证实了MAPK8、HDAC6、DNAJB1和TARDBP在DR模型中的表达。ROC曲线结果显示,MAPK8、HDAC6、DNAJB1和TSC2具有较高的预测准确性,可作为DR的生物标志物。

结论

通过生物信息学分析,我们鉴定出26个可能与DR自噬相关的基因。我们认为,作为生物标志物的枢纽基因MAPK8和HDAC6可能参与DR中的自噬过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1874/12133481/ee5712326974/fendo-16-1487007-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验