Suppr超能文献

数据科学中的偏微分方程。

Partial differential equations in data science.

作者信息

Bertozzi Andrea L, Drenska Nadejda, Latz Jonas, Thorpe Matthew

机构信息

Department of Mathematics, UCLA, Los Angeles, CA, USA.

Department of Mathematics, Louisiana State University, Baton Rouge, LA, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2025 Jun 5;383(2298):20240249. doi: 10.1098/rsta.2024.0249.

Abstract

The advent of artificial intelligence and machine learning has led to significant technological and scientific progress, but also to new challenges. Partial differential equations, usually used to model systems in the sciences, have shown to be useful tools in a variety of tasks in the data sciences, be it just as physical models to describe physical data, as more general models to replace or construct artificial neural networks, or as analytical tools to analyse stochastic processes appearing in the training of machine-learning models. This article acts as an introduction of a theme issue covering synergies and intersections of partial differential equations and data science. We briefly review some aspects of these synergies and intersections in this article and end with an editorial foreword to the issue.This article is part of the theme issue 'Partial differential equations in data science'.

摘要

人工智能和机器学习的出现带来了重大的技术和科学进步,但也带来了新的挑战。偏微分方程通常用于对科学中的系统进行建模,已证明在数据科学的各种任务中是有用的工具,无论是作为描述物理数据的物理模型,作为替代或构建人工神经网络的更通用模型,还是作为分析机器学习模型训练中出现的随机过程的分析工具。本文是一个主题专刊的引言,该专刊涵盖偏微分方程与数据科学的协同作用和交叉点。我们在本文中简要回顾了这些协同作用和交叉点的一些方面,并以该专刊的编辑前言作为结尾。本文是“数据科学中的偏微分方程”主题专刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cba/12162097/136b0778f009/rsta.2024.0249.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验