Pawledzio Sylwia, Einkauf Jeffrey, Custelcean Radu, Wang Xiaoping
Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
J Am Chem Soc. 2025 Aug 6;147(31):27299-27313. doi: 10.1021/jacs.5c01946. Epub 2025 Jun 5.
Direct air capture (DAC) materials enable the removal of CO from the atmosphere, but improving their efficiency requires a detailed understanding of the intermolecular interactions that govern CO sorption and release. Here, we present an experimental electron density study of methylglyoxal-bis(iminoguanidine) (MGBIG), a promising DAC material, using high-resolution X-ray and neutron diffraction data combined with quantum crystallographic analysis. This approach bridges theoretical and experimental data by quantifying electron density distributions and revealing how hydrogen bonds stabilize CO-derived carbonate phases and may influence the desorption behavior. We identify distinct hydrogen-bonding environments in two crystalline carbonate phases: P1, a transient kinetic product, and P3, a thermodynamically stable phase. Multipolar refinement and electrostatic potential and multipole moment calculations precisely map electron density distributions, revealing key hydrogen bonds involved in CO capture. Topological analysis of electron density highlights a cooperative hydrogen-bonding network in the thermodynamically favored P3 phase, where enhanced electron density delocalization and water-mediated interactions contribute to a more stable lattice. Energetic analyses confirm that stronger hydrogen bonding networks enhance the stability of P3 with a binding energy of -607.0 kJ/mol and greater lattice stability (-847.3 kJ/mol) compared to P1 (-302.5 and -571.0 kJ/mol, respectively). Electrostatic potential maps further illustrate polarization patterns that may influence the stability of the binding of CO and release conditions. These findings establish a direct experimental framework for linking electron density distributions to intermolecular interactions in DAC materials, providing a rational design strategy for optimizing sorbents with improved CO capture efficiency and reduced energy demands.
直接空气捕获(DAC)材料能够从大气中去除二氧化碳,但提高其效率需要详细了解控制二氧化碳吸附和释放的分子间相互作用。在这里,我们使用高分辨率X射线和中子衍射数据结合量子晶体分析,对一种有前景的DAC材料甲基乙二醛双(亚氨基胍)(MGBIG)进行了实验电子密度研究。这种方法通过量化电子密度分布并揭示氢键如何稳定源自二氧化碳的碳酸盐相以及可能影响解吸行为,将理论数据与实验数据联系起来。我们在两个结晶碳酸盐相中确定了不同的氢键环境:P1,一种瞬态动力学产物;以及P3,一种热力学稳定相。多极精修以及静电势和多极矩计算精确地绘制了电子密度分布,揭示了参与二氧化碳捕获的关键氢键。电子密度的拓扑分析突出了热力学上更有利的P3相中的协同氢键网络,其中增强的电子密度离域和水介导的相互作用有助于形成更稳定的晶格。能量分析证实,与P1(分别为 -302.5和 -571.0 kJ/mol)相比,更强的氢键网络增强了P3的稳定性,其结合能为 -607.0 kJ/mol,晶格稳定性更高(-847.3 kJ/mol)。静电势图进一步说明了可能影响二氧化碳结合稳定性和释放条件的极化模式。这些发现建立了一个直接的实验框架,用于将电子密度分布与DAC材料中的分子间相互作用联系起来,为优化具有更高二氧化碳捕获效率和更低能量需求的吸附剂提供了一种合理的设计策略。