Omura Satoshi N, Alfonse Lauren E, Ornstein Alexa, Morinaga Hayato, Hirano Hisato, Itoh Yuzuru, Munoz Gabrielle, Garrity Anthony J, Hoffman Gregory R, DiTommaso Tia, Yan Winston X, Cheng David R, Scott David A, Maben Zachary, Nureki Osamu
Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
Arbor Biotechnologies, 20 Acorn Park Drive, Tower 500, Cambridge, MA, USA.
Commun Biol. 2025 Jun 5;8(1):876. doi: 10.1038/s42003-025-08300-8.
RNA-guided CRISPR-Cas nucleases are widely used as versatile genome-engineering tools. Among the diverse CRISPR-Cas effectors, CRISPR-Casλ-also referred to as Cas12n-is a recently identified miniature type V nuclease encoded in phage genomes. Given its demonstrated nuclease activity in both mammalian and plant cells, Casλ has emerged as a promising candidate for genome-editing applications. However, the precise molecular mechanisms of Casλ family enzymes remain poorly understood. In this study, we report the identification and detailed biochemical and structural characterizations of CRISPR-Casλ2. The cryo-electron microscopy structures of Casλ2 in five different functional states unveiled the dynamic domain rearrangements during its activation. Our biochemical analyses indicated that Casλ2 processes its precursor crRNA to a mature crRNA using the RuvC active site through a unique ruler mechanism, in which Casλ2 defines the spacer length of the mature crRNA. Furthermore, structural comparisons of Casλ2 with Casλ1 and CasΦ highlighted the diversity and conservation of phage-encoded type V CRISPR-Cas enzymes. Collectively, our findings augment the mechanistic understanding of diverse CRISPR-Cas nucleases and establish a framework for rational engineering of the CRISPR-Casλ-based genome-editing platform.
RNA引导的CRISPR-Cas核酸酶作为多功能基因组工程工具被广泛使用。在多种CRISPR-Cas效应蛋白中,CRISPR-Casλ(也称为Cas12n)是最近在噬菌体基因组中发现的一种小型V型核酸酶。鉴于其在哺乳动物和植物细胞中已证实的核酸酶活性,Casλ已成为基因组编辑应用的一个有前途的候选者。然而,Casλ家族酶的确切分子机制仍知之甚少。在本研究中,我们报告了CRISPR-Casλ2的鉴定以及详细的生化和结构表征。Casλ2在五种不同功能状态下的冷冻电子显微镜结构揭示了其激活过程中的动态结构域重排。我们的生化分析表明,Casλ2利用RuvC活性位点通过一种独特的标尺机制将其前体crRNA加工成成熟的crRNA,其中Casλ2确定了成熟crRNA的间隔区长度。此外,Casλ2与Casλ1和CasΦ的结构比较突出了噬菌体编码的V型CRISPR-Cas酶的多样性和保守性。总的来说,我们的发现加深了对多种CRISPR-Cas核酸酶机制的理解,并为基于CRISPR-Casλ的基因组编辑平台的合理工程设计建立了一个框架。