整合计算病理学和多转录组学以表征肺腺癌异质性及预后建模。

Integrating computational pathology and multi-transcriptomics to characterize lung adenocarcinoma heterogeneity and prognostic modeling.

作者信息

Li Zerong, Qiao Wenmei, Yu Siming, Fan Bin, Yang Ming, Wu Mingjuan, Qiu Fang, Wang Jinping

机构信息

Department of Pharmacy, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P. R. China.

Department of Pharmacy, The Third People's Hospital of Shenzhen, The second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China.

出版信息

Int J Surg. 2025 Aug 1;111(8):5162-5181. doi: 10.1097/JS9.0000000000002639. Epub 2025 Jun 5.

Abstract

BACKGROUND

Lung adenocarcinoma (LUAD) is the most prevalent subtype of non-small cell lung cancer (NSCLC), characterized by high molecular and pathological heterogeneity. While traditional histopathology plays a key role in LUAD diagnosis, integrating computational pathology with multi-omics analysis provides novel insights into tumor microenvironment (TME) dynamics and molecular mechanisms. However, the relationship between pathological histological features and genomic instability in LUAD remains poorly understood.

METHODS

This study employed whole-slide images (WSIs) from the TCGA-LUAD dataset, which were processed into image patches for deep learning feature extraction using ResNet-50 and pathological feature selection using CellProfiler. Copy number variations (CNV) were inferred using inferCNV, and high-dimensional weighted gene co-expression network analysis (hdWGCNA) was performed to identify key regulatory modules associated with CNV-defined malignant cell populations. Additional analyses included intercellular communication using CellChat, pseudotime trajectory inference with Monocle2, and immune landscape profiling. Finally, we performed correlation analyses between the gene expression patterns of high-CNV (HCNV) cell lines and pathological image features, followed by prognostic model construction using a machine learning benchmark framework.

RESULTS

This study first identified LUAD malignant cells with high CNV scores. These cells also exhibited high stemness, and their proportion gradually increases with the progression of LUAD. CNV-driven tumor subpopulations exhibited distinct metabolic and immune signatures, with HCNV cells showing enhanced glycolysis, MYC signaling, and immune evasion. Intercellular communication analysis highlighted VEGF, MK and IGF signaling pathways as key mediators of HCNV-stroma interactions. A set of 192 imaging features significantly correlated with CNV burden in LUAD was identified, including 11 pathological features from CellProfiler and 181 deep learning features from ResNet-50. Machine learning-based prognostic modeling using deep learning and pathology features demonstrated robust survival prediction, with high-risk patients exhibiting lower immune infiltration and reduced immunotherapy responsiveness.

CONCLUSION

This study provides a comprehensive multi-dimensional framework integrating computational pathology and single-cell multi-omics to characterize LUAD heterogeneity. By identifying CNV-associated imaging features and key molecular regulators, we propose potential biomarkers for prognosis and therapeutic targeting in LUAD. However, as this study is based primarily on retrospective bioinformatics analysis, the clinical utility of these findings requires further validation through prospective cohorts and experimental studies. These results lay the groundwork for future translational applications but should be interpreted with caution in the absence of functional validation.

摘要

背景

肺腺癌(LUAD)是非小细胞肺癌(NSCLC)中最常见的亚型,具有高度的分子和病理异质性。虽然传统组织病理学在LUAD诊断中起关键作用,但将计算病理学与多组学分析相结合能为肿瘤微环境(TME)动态和分子机制提供新的见解。然而,LUAD中病理组织学特征与基因组不稳定性之间的关系仍知之甚少。

方法

本研究使用了来自TCGA-LUAD数据集的全切片图像(WSIs),将其处理成图像块,以便使用ResNet-50进行深度学习特征提取,并使用CellProfiler进行病理特征选择。使用inferCNV推断拷贝数变异(CNV),并进行高维加权基因共表达网络分析(hdWGCNA)以识别与CNV定义的恶性细胞群体相关的关键调控模块。其他分析包括使用CellChat进行细胞间通讯分析、使用Monocle2进行伪时间轨迹推断以及免疫景观分析。最后,我们对高CNV(HCNV)细胞系的基因表达模式与病理图像特征进行了相关性分析,随后使用机器学习基准框架构建预后模型。

结果

本研究首次鉴定出具有高CNV评分的LUAD恶性细胞。这些细胞还表现出高干性,并且其比例随着LUAD的进展而逐渐增加。CNV驱动的肿瘤亚群表现出不同的代谢和免疫特征,HCNV细胞显示糖酵解增强以及MYC信号传导和免疫逃逸增强。细胞间通讯分析突出了VEGF、MK和IGF信号通路是HCNV-基质相互作用的关键介质。确定了一组192个与LUAD中CNV负担显著相关的成像特征,包括来自CellProfiler的11个病理特征和来自ResNet-50的181个深度学习特征。使用深度学习和病理特征进行的基于机器学习的预后建模显示出强大的生存预测能力,高危患者的免疫浸润较低且免疫治疗反应性降低。

结论

本研究提供了一个综合的多维度框架,整合了计算病理学和单细胞多组学来表征LUAD的异质性。通过识别与CNV相关的成像特征和关键分子调节因子,我们提出了LUAD预后和治疗靶点的潜在生物标志物。然而,由于本研究主要基于回顾性生物信息学分析,这些发现的临床实用性需要通过前瞻性队列和实验研究进一步验证。这些结果为未来的转化应用奠定了基础,但在缺乏功能验证的情况下应谨慎解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索