文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

放射学实践中用于诊断的人工智能:一项快速系统的范围综述。

Artificial intelligence for diagnostics in radiology practice: a rapid systematic scoping review.

作者信息

Lawrence Rachel, Dodsworth Emma, Massou Efthalia, Sherlaw-Johnson Chris, Ramsay Angus I G, Walton Holly, O'Regan Tracy, Gleeson Fergus, Crellin Nadia, Herbert Kevin, Ng Pei Li, Elphinstone Holly, Mehta Raj, Lloyd Joanne, Halliday Amanda, Morris Stephen, Fulop Naomi J

机构信息

Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, UK.

Research and Policy, Nuffield Trust, London, UK.

出版信息

EClinicalMedicine. 2025 May 12;83:103228. doi: 10.1016/j.eclinm.2025.103228. eCollection 2025 May.


DOI:10.1016/j.eclinm.2025.103228
PMID:40474995
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12140059/
Abstract

BACKGROUND: The aim of this review was to evaluate evidence on the use of Artificial Intelligence (AI) to support diagnostics in radiology, including implementation, experiences, perceptions, quantitative, and cost outcomes. METHODS: We conducted a systematic scoping review (PROSPERO registration: CRD42024537518) and discussed emerging findings with relevant stakeholders (radiology staff, public members) using workshops. We searched four databases and the grey literature for articles published between 1st January 2020 and 31st January 2025. Articles were screened for eligibility ( = 8013), resulting in 140 included studies. Studies evaluated implementation ( = 7), perceptions ( = 74), experiences ( = 14), effectiveness ( = 53), and cost ( = 6). FINDINGS: Factors influencing AI adoption were identified, including the high technical demand, lack of guidance, training/knowledge, transparency, and expert engagement. Evidence demonstrated improvements in diagnostic accuracy and reductions in interpretation time. However, evidence was mixed regarding experiences of using AI, the risk of increasing false positives, and the wider impact of AI on workflow efficiency and cost-effectiveness. INTERPRETATION: The potential benefits of AI are evident, but there is a paucity of evidence in real-world settings, supporting cautiousness in how AI is perceived (e.g., as a complementary tool, not a solution). We outline wider implications for policy and practice and summarise evidence gaps. FUNDING: This project is funded by the National Institute for Health and Care Research, Health and Social Care Delivery Research programme (Ref: NIHR156380). NJF and AIGR are supported by the National Institute for Health Research (NIHR) Central London Patient Safety Research Collaboration and NJF is an NIHR Senior Investigator. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

摘要

背景:本综述的目的是评估关于使用人工智能(AI)支持放射学诊断的证据,包括实施情况、经验、看法、定量结果和成本效益。 方法:我们进行了一项系统的范围综述(PROSPERO注册编号:CRD42024537518),并通过研讨会与相关利益相关者(放射科工作人员、公众成员)讨论了新出现的研究结果。我们在四个数据库和灰色文献中搜索了2020年1月1日至2025年1月31日发表的文章。对文章进行了资格筛选(n = 8013),最终纳入140项研究。这些研究评估了实施情况(n = 7)、看法(n = 74)、经验(n = 14)、有效性(n = 53)和成本(n = 6)。 结果:确定了影响人工智能采用的因素,包括高技术要求、缺乏指导、培训/知识、透明度以及专家参与度。有证据表明诊断准确性有所提高,解读时间有所缩短。然而,关于使用人工智能的经验、增加假阳性的风险以及人工智能对工作流程效率和成本效益的更广泛影响,证据并不一致。 解读:人工智能的潜在好处是显而易见的,但在实际应用中证据不足,这支持了在看待人工智能时要谨慎(例如,将其视为一种辅助工具,而非解决方案)。我们概述了对政策和实践的更广泛影响,并总结了证据空白。 资金:本项目由国家卫生与保健研究机构的卫生与社会保健交付研究项目资助(参考编号:NIHR156380)。NJF和AIGR得到了国家卫生研究院(NIHR)伦敦中心患者安全研究合作项目的支持,NJF是NIHR高级研究员。所表达的观点是作者的观点,不一定代表NIHR或卫生与社会保健部的观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80a9/12140059/dbce14472366/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80a9/12140059/dbce14472366/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80a9/12140059/dbce14472366/gr1.jpg

相似文献

[1]
Artificial intelligence for diagnostics in radiology practice: a rapid systematic scoping review.

EClinicalMedicine. 2025-5-12

[2]
Strategies used for childhood chronic functional constipation: the SUCCESS evidence synthesis.

Health Technol Assess. 2024-1

[3]
Artificial intelligence software for analysing chest X-ray images to identify suspected lung cancer: an evidence synthesis early value assessment.

Health Technol Assess. 2024-8

[4]
Beyond the black stump: rapid reviews of health research issues affecting regional, rural and remote Australia.

Med J Aust. 2020-12

[5]
Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review.

Comput Biol Med. 2025-1

[6]
Peer support for adult social care in prisons in England and Wales: a mixed-methods rapid evaluation.

Health Soc Care Deliv Res. 2025-1

[7]
Current experience and future potential of facilitating access to digital NHS primary care services in England: the Di-Facto mixed-methods study.

Health Soc Care Deliv Res. 2024-9

[8]

2022-9

[9]
A rapid mixed-methods evaluation of remote home monitoring models during the COVID-19 pandemic in England.

Health Soc Care Deliv Res. 2023-7

[10]
Artificial intelligence technologies and compassion in healthcare: A systematic scoping review.

Front Psychol. 2023-1-17

本文引用的文献

[1]
Knowledge, Attitudes, Perceptions, and Practices Related to Artificial Intelligence in Radiology Among Indian Radiologists and Residents: A Multicenter Nationwide Study.

Cureus. 2024-12-31

[2]
Automated vs manual cardiac MRI planning: a single-center prospective evaluation of reliability and scan times.

Eur Radiol. 2025-1-22

[3]
Lessons on AI implementation from senior clinical practitioners: An exploratory qualitative study in medical imaging and radiotherapy in the UK.

J Med Imaging Radiat Sci. 2025-1

[4]
The Promise of AI for Image-Driven Medicine: Qualitative Interview Study of Radiologists' and Pathologists' Perspectives.

JMIR Hum Factors. 2024-11-21

[5]
Facing the AI challenge in radiology: Lessons learned from a regional survey among Austrian radiologists in academic and non-academic settings on perceptions and expectations towards artificial intelligence.

Digit Health. 2024-11-14

[6]
Comparison of MRI artificial intelligence-guided cognitive fusion-targeted biopsy versus routine cognitive fusion-targeted prostate biopsy in prostate cancer diagnosis: a randomized controlled trial.

BMC Med. 2024-11-13

[7]
Real-World Performance of Pneumothorax-Detecting Artificial Intelligence Algorithm and its Impact on Radiologist Reporting Times.

Acad Radiol. 2025-3

[8]
Attitudes and perceptions of Thai medical students regarding artificial intelligence in radiology and medicine.

BMC Med Educ. 2024-10-22

[9]
Evaluation of the Impact of Artificial Intelligence on Clinical Practice of Radiology in Saudi Arabia.

J Multidiscip Healthc. 2024-10-11

[10]
Effectiveness of an Artificial Intelligence Software for Limb Radiographic Fracture Recognition in an Emergency Department.

J Clin Med. 2024-9-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索