文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

饮食调整会影响缺血性急性肾损伤愈合期的肾脏恢复。

Dietary modifications affect renal recovery during the healing phase following ischemic acute ischemic kidney injury.

作者信息

Jeon Junseok, Lee Kyungho, Jeon Hojin, Yang Kyeong Eun, Lee Cheol-Jung, Lee Jung Eun, Kwon Ghee Young, Huh Wooseong, Jang Hye Ryoun

机构信息

Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

Division of Scientific Instrumentation & Management, Korea Basic Science Institute, Daejeon, Republic of Korea.

出版信息

Front Cell Dev Biol. 2025 May 22;13:1494660. doi: 10.3389/fcell.2025.1494660. eCollection 2025.


DOI:10.3389/fcell.2025.1494660
PMID:40476004
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12137256/
Abstract

INTRODUCTION: The effects of dietary modifications, such as varying amounts of salt, fat, and protein intake on the healing phase of acute kidney injury (AKI) remain to be elucidated. We investigated the effects of low- or high-salt/fat/protein diets on the intrarenal immunologic micromilieu and healing after renal ischemia-reperfusion injury (IRI) using murine ischemic AKI and human kidney-2 (HK-2) cell hypoxia models. METHODS: Three cohorts of male C57BL/6 mice (9-weeks old) were fed the designated diet from the third day following renal IRI until sacrifice (6 or 12 weeks after bilateral or unilateral IRI, respectively) in groups as follows: cohort 1, control, high- and low-salt/fat/protein; cohort 2, control, high- and low-salt; cohort 3, control, high- and low-fat/protein. Hypoxic HK-2 cells were treated with sodium chloride, amino acids, or fatty acids. RESULTS: Low-salt/fat/protein diet aggravated interstitial fibrosis, enhanced TGF-β expression, and induced more proinflammatory changes after bilateral IRI. High-salt diet aggravated renal tubular damage and enhanced the expression of intrarenal TGF-β after bilateral IRI, whereas low-salt diet enhanced the expression of intrarenal TGF-β after unilateral IRI. Low-salt diet induced more proinflammatory changes after bilateral IRI. Blood urea nitrogen levels were lower in the low fat/protein group than that in the control group following IRI. However, low-fat/protein diet aggravated interstitial fibrosis and enhanced intrarenal TGF-β expression after unilateral IRI. High sodium- or protein-containing media suppressed the proliferation of hypoxic HK-2 cells, whereas high lipid-containing media enhanced the proliferation of hypoxic HK-2 cells. CONCLUSION: Excessive low or high salt, low fat, and low protein diet may adversely affect the healing process following renal IRI, supporting the importance of adequate and balanced nutrition during the recovery phase of ischemic AKI.

摘要

引言:饮食调整,如不同量的盐、脂肪和蛋白质摄入对急性肾损伤(AKI)愈合阶段的影响仍有待阐明。我们使用小鼠缺血性AKI模型和人肾-2(HK-2)细胞缺氧模型,研究了低盐/高脂/低蛋白或高盐/高脂/高蛋白饮食对肾内免疫微环境及肾缺血再灌注损伤(IRI)后愈合的影响。 方法:三组9周龄雄性C57BL/6小鼠在肾IRI后第三天开始喂食指定饮食,直至处死(分别在双侧或单侧IRI后6周或12周),分组如下:第1组,对照、高盐/高脂/高蛋白和低盐/高脂/低蛋白;第2组,对照、高盐和低盐;第3组,对照、高脂肪/高蛋白和低脂肪/高蛋白。用氯化钠、氨基酸或脂肪酸处理缺氧的HK-2细胞。 结果:低盐/高脂/低蛋白饮食加重双侧IRI后的间质纤维化,增强TGF-β表达,并诱导更多促炎变化。高盐饮食加重双侧IRI后的肾小管损伤并增强肾内TGF-β表达,而低盐饮食增强单侧IRI后肾内TGF-β表达。低盐饮食在双侧IRI后诱导更多促炎变化。IRI后低脂/低蛋白组的血尿素氮水平低于对照组。然而,低脂/低蛋白饮食加重单侧IRI后的间质纤维化并增强肾内TGF-β表达。高钠或高蛋白培养基抑制缺氧HK-2细胞的增殖,而高脂培养基增强缺氧HK-2细胞的增殖。 结论:过多的低盐或高盐、低脂和低蛋白饮食可能对肾IRI后的愈合过程产生不利影响,支持了缺血性AKI恢复阶段充足和均衡营养的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/a8e8a267b2ff/fcell-13-1494660-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/dc5cfb890625/fcell-13-1494660-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/80ca7cfe7d39/fcell-13-1494660-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/18b0c3f9043e/fcell-13-1494660-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/17f16612a864/fcell-13-1494660-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/0c508ff8bbd8/fcell-13-1494660-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/28c83fbdc11c/fcell-13-1494660-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/c887cc99436a/fcell-13-1494660-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/1fa5159f5dfb/fcell-13-1494660-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/0cad43c8361f/fcell-13-1494660-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/0ddd7f76d207/fcell-13-1494660-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/a080a2bb2395/fcell-13-1494660-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/af008ba3e890/fcell-13-1494660-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/a8e8a267b2ff/fcell-13-1494660-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/dc5cfb890625/fcell-13-1494660-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/80ca7cfe7d39/fcell-13-1494660-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/18b0c3f9043e/fcell-13-1494660-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/17f16612a864/fcell-13-1494660-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/0c508ff8bbd8/fcell-13-1494660-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/28c83fbdc11c/fcell-13-1494660-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/c887cc99436a/fcell-13-1494660-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/1fa5159f5dfb/fcell-13-1494660-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/0cad43c8361f/fcell-13-1494660-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/0ddd7f76d207/fcell-13-1494660-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/a080a2bb2395/fcell-13-1494660-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/af008ba3e890/fcell-13-1494660-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b2/12137256/a8e8a267b2ff/fcell-13-1494660-g013.jpg

相似文献

[1]
Dietary modifications affect renal recovery during the healing phase following ischemic acute ischemic kidney injury.

Front Cell Dev Biol. 2025-5-22

[2]
Dietary Modification Alters the Intrarenal Immunologic Micromilieu and Susceptibility to Ischemic Acute Kidney Injury.

Front Immunol. 2021

[3]
Effects of poly (ADP-ribose) polymerase inhibitor treatment on the repair process of ischemic acute kidney injury.

Sci Rep. 2024-1-2

[4]
Poly (ADP-Ribose) Polymerase Inhibitor Treatment as a Novel Therapy Attenuating Renal Ischemia-Reperfusion Injury.

Front Immunol. 2020

[5]
Repair phase modeling of ischemic acute kidney injury: recovery vs. transition to chronic kidney disease.

Am J Transl Res. 2022-1-15

[6]
Lrg1 silencing attenuates ischemia-reperfusion renal injury by regulating autophagy and apoptosis through the TGFβ1- Smad1/5 signaling pathway.

Arch Biochem Biophys. 2024-3

[7]
Blockade of STAT3 signaling alleviates the progression of acute kidney injury to chronic kidney disease through antiapoptosis.

Am J Physiol Renal Physiol. 2022-5-1

[8]
Pretreatment with a novel Toll-like receptor 4 agonist attenuates renal ischemia-reperfusion injury.

Am J Physiol Renal Physiol. 2023-5-1

[9]
ISG15 accelerates acute kidney injury and the subsequent AKI-to-CKD transition by promoting TGFβR1 ISGylation.

Theranostics. 2024-7-22

[10]
Membranous translocation of murine double minute 2 promotes the increased renal tubular immunogenicity in ischemia-reperfusion-induced acute kidney injury.

Am J Physiol Renal Physiol. 2024-8-1

本文引用的文献

[1]
Mitochondrial metabolism and targeted treatment strategies in ischemic-induced acute kidney injury.

Cell Death Discov. 2024-2-10

[2]
Glomerular hyperfiltration as a therapeutic target for CKD.

Nephrol Dial Transplant. 2024-7-31

[3]
Tissue Sodium Accumulation Induces Organ Inflammation and Injury in Chronic Kidney Disease.

Int J Mol Sci. 2023-5-5

[4]
Preoperative Short-Term Restriction of Sulfur-Containing Amino Acid Intake for Prevention of Acute Kidney Injury After Cardiac Surgery: A Randomized, Controlled, Double-Blind, Translational Trial.

J Am Heart Assoc. 2022-9-6

[5]
Metabolic Syndrome-Related Kidney Injury: A Review and Update.

Front Endocrinol (Lausanne). 2022

[6]
Effects of preoperative high-oral protein loading on short- and long-term renal outcomes following cardiac surgery: a cohort study.

J Transl Med. 2022-5-10

[7]
High-Fat Diet Increased Oxidative Stress and Mitochondrial Dysfunction Induced by Renal Ischemia-Reperfusion Injury in Rat.

Front Physiol. 2021-9-3

[8]
Dietary Modification Alters the Intrarenal Immunologic Micromilieu and Susceptibility to Ischemic Acute Kidney Injury.

Front Immunol. 2021

[9]
High salt aggravates renal inflammation via promoting pro-inflammatory macrophage in 5/6-nephrectomized rat.

Life Sci. 2021-6-1

[10]
Elevated Fat Intake Increases Body Weight and the Risk of Overweight and Obesity among Chinese Adults: 1991-2015 Trends.

Nutrients. 2020-10-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索